Skip to main content

Image Representation for Image Mining: A Study Focusing on Mining Satellite Images for Census Data Collection

  • Conference paper
  • First Online:
Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2016)

Abstract

This paper firstly presents a taxonomy for mage representation in the context of image mining. The main premise being that the actual mining algorithms that may be used are well understood, it is the preprocessing of the image data that remains a challenge. The requirement for the output from this preprocessing is some image representation that us both sufficiently expressive while at the same time being compatible with the mining process to be applied. Three categories of representation are considered: (i) statistics-based, (ii) tree-based and (iii) point series based. The second contribution of this paper is an analysis of the proposed representations categories with respect to a novel image mining application, the collection of individual household census data from satellite imagery, more specifically Google earth satellite imagery. The representations are considered both in terms of generating census prediction models and in terms of applying such models for larger scale census prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albarrak, A., Coenen, F., Zheng, Y.: Classification of volumetric retinal images using overlapping decomposition and tree analysis. In: Proceedings of 26th IEEE International Symposium on Computer-Based Medical Systems (CBMS 2013), pp. 11–16 (2013)

    Google Scholar 

  2. Albarrak, A., Coenen, F., Zheng, Y.: Volumetric image classification using homogeneous decomposition and dictionary learning: a study using retinal optical coherence tomography for detecting age-related macular degeneration. J. Comput. Med. Imaging Graph. 55, 113–123 (2016)

    Article  Google Scholar 

  3. Amaral, S., Monteiro, A.V.M., Câmara, G., Quintanilha, J.A.: DMSP/OLS night time light imagery for urban population estimates in the Brazilian Amazon. Int. J. Remote Sens. 27(5), 855–870 (2006)

    Article  Google Scholar 

  4. Al Salman, A.S., Ali, A.E.: Population estimation from high resolution satellite imagery: a case study from Khartoum. Emir. J. Eng. Res. 16(1), 63–69 (2011)

    Google Scholar 

  5. Berndt, D.j., Clifford, J.: Using dynamic time warping to find patterns in time series. In: Proceedings of AAAI Workshop on Knowledge Discovery in Databases, pp 229–248 (1994)

    Google Scholar 

  6. Cheng, L., Zhou, Y., Wang, L., Wang, S., Du, C.: An estimate of the city population in China using DMSP night-time satellite imagery. In: Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS), pp 691–694 (2007)

    Google Scholar 

  7. Dittakan, K.: Population estimation mining from satellite imagery. Ph.D. thesis, University of Liverpool (2015)

    Google Scholar 

  8. Dittakan, K., Coenen, F.: Early Detection of Osteoarthritis Using Local Binary Patterns: A Study Directed at Human Joint Imagery. In: Booth, R., Zhang, M.-L. (eds.) PRICAI 2016. LNCS (LNAI), vol. 9810, pp. 93–105. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42911-3_8

    Chapter  Google Scholar 

  9. Elsayed, A., Hijazi, M.H.A., Coenen, F., García-Fiñana, M., Sluming, V., Zheng, Y.: Classification of MRI brain scan data using shape criteria. Ann. Br. Mach. Vis. Assoc. (BMVA) 2011(6), 1–14 (2011)

    Google Scholar 

  10. Elsayed, A., Coenen, F., García-Fiñana, M., Sluming, V.: Region of interest based image classification: a study in MRI brain scan categorization. In: Karahoca, A. (ed.) Data Mining Applications in Engineering and Medicine, pp. 225–248. InTech - Open Science, Slavka Krautzeka (2012)

    Google Scholar 

  11. El Salhi, S., Coenen, F., Dixon, C., Khan, M.: Predicting springback using 3D surface representation techniques: a case study in sheet metal forming. J. Expert Syst. Appl. 42(1), 79–93 (2014)

    Article  Google Scholar 

  12. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann, Burlington (2011)

    MATH  Google Scholar 

  13. Haverkamp, D.: Automatic building extraction from IKONOS imagery. In: Proceedings of Annual Conference of the American Society for Photogrammetry and Remote Sensing (2004)

    Google Scholar 

  14. Hijazi, M.H.A., Coenen, F., Zheng, Y.: Data mining techniques for the screening of age-related macular degeneration. J. Knowl. Based Syst. 29, 83–92 (2012)

    Article  Google Scholar 

  15. Hijazi, M.H.A., Coenen, F., Zheng, Y.: Data mining for AMD screening: a classification based approach. Int. J. Simul. Syst. Sci. Technol. (IJSSST) 15(2), 64–68 (2015)

    Google Scholar 

  16. Hamza, I.A., Iyela, A.: Land use pattern, climate change, and its implication for food security in Ethiopia: a review. Ethiop. J. Env. Stud. Manag. 5, 26–31 (2012)

    Google Scholar 

  17. Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraph in the presence of isomorphism. In: Proceedings of the 2003 International Conference on Data Mining (ICDM 2003), pp. 549–561 (2003)

    Google Scholar 

  18. Javed, Y., Khan, M.M., Chanussot, J.: Population density estimation using textons. In: Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS 2012), pp. 2206–2209 (2012)

    Google Scholar 

  19. Jiang, C., Coenen, F., Zito, M.: A survey of frequent subgraph mining algorithms. Knowl. Eng. Rev. 28(1), 75–105 (2013)

    Article  Google Scholar 

  20. Karter, J.: Time Series Analysis with MATLAB. CreateSpace Independent Publishing Platform (2016)

    Google Scholar 

  21. Khan, M., Coenen, F., Dixon, C., El Salhi, S., Penalva, M., Rivero, A.: An intelligent process model: predicting springback in single point incremental forming. Int. J. Adv. Manuf. Technol. 76, 2071–2082 (2015)

    Article  Google Scholar 

  22. Kraus, S.P., Senger, L.W., Ryerson, J.M.: Estimating population from photographically determined residential land use types. J. Remote Sens. Environ. 3(1), 35–42 (1974)

    Article  Google Scholar 

  23. Krizhevsky, A., Sutskever. I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Proceedings of NIPS (2012)

    Google Scholar 

  24. Li, G., Wang, Q.: Using Landsat ETM+ imagery to measure population density in Indianapolis, Indiana, USA. J Photogramm. Eng. Remote Sens. 71(8), 63–69 (2005)

    Google Scholar 

  25. Liang, P., Li, S.F., Qin, J.W.: Multi-resolution local binary patterns for image classification. In: Proceedings of the Twentieth International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), pp. 164–169 (2010)

    Google Scholar 

  26. Liu, X., Clarke, K.: Estimation of residential population using high resolution satellite imagery. In: Proceedings of Third International Symposium on Remote Sensing of Urban Area, pp. 153–160 (2002)

    Google Scholar 

  27. Lo, C.: Zone-based estimation of population and housing units from satellite-generated land use/land cover maps. In: Mesev, V. (ed.) Remotely Sensed Cities, pp. 157–180. Taylor and Francis, London and New York (2003)

    Google Scholar 

  28. Ma, T., Zhou, C., Pei, T., Haynie, S., Fan, J.: Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: a comparative case study from China’s cities. J. Remote Sens. Environ. 124, 99–107 (2012)

    Article  Google Scholar 

  29. Madden, P., Goodman, J., Green, J., Jenkinson, C.: Growing pains: population and sustainability in the UK. Technical report, Forum for the Future (2010)

    Google Scholar 

  30. Mather, M., Pollard, K., Jacobsen, L.A.: Report on America: first results from the 2010 census. Technical report, Population Reference Bureau, Washington, DC, USA (2011)

    Google Scholar 

  31. Montanvert, A., Meer, P., Rosenfield, R.: Hierarchical image analysis using irregular tessellations. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 307–316 (1991)

    Article  Google Scholar 

  32. Myers, C.S., Rabiner, L.R.: A comparative study of several dynamic time-warping algorithms for connected word recognition. Bell Syst. Tech. J. 60(7), 1389–1409 (1981)

    Article  Google Scholar 

  33. Office for National Statistics: National population projections, 2010-based statistical bulletin. Technical report, Office for National Statistics (2011)

    Google Scholar 

  34. Pietikäinen, M.: Image analysis with local binary patterns. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 115–118. Springer, Heidelberg (2005). https://doi.org/10.1007/11499145_13

    Chapter  Google Scholar 

  35. Pink, B.: Census of population and housing: nature and content Australia 2011. Technical report, Australian Bureau of Statistics (2008)

    Google Scholar 

  36. Pozzi, F., Small, C., Yetman, G.: Modeling the distribution of human population with night-time satellite imagery and gridded population of the world. In: Proceedings of Future Intelligent Earth Observing Satellites Conference (2002)

    Google Scholar 

  37. Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zheng, Y.: Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 200–205 (2016). (In: Proceedings of Medical Image Understanding and Analysis (MIUA 2016))

    Article  Google Scholar 

  38. Samet, H.: The quadtree and related hierarchical data structures. ACM Comput. Surv. 16(2), 187–260 (1984)

    Article  MathSciNet  Google Scholar 

  39. Sutton, P.: Modeling population density with night-time satellite imagery and GIS. Comput. Environ. Urban Syst. 21, 227–244 (1997)

    Article  Google Scholar 

  40. Tadmor, E., Nezzar, S., Vese, L.: Multiscale hierarchical decomposition of images with applications to deblurring, denoising and segmentation. Commun. Math. Sci. 6(2), 281–307 (2008)

    Article  MathSciNet  Google Scholar 

  41. Udomchaiporn, A., Coenen, F., García-Fiñana, M., Sluming, V.: 3-D volume of interest based image classification. In: Booth, R., Zhang, M.-L. (eds.) PRICAI 2016. LNCS (LNAI), vol. 9810, pp. 543–555. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42911-3_45

    Chapter  Google Scholar 

  42. Wu, S.S., Qiu, X., Wang, L.: Population estimation methods in GIS and remote sensing: a review. J. GISci. Remote Sens. 42(1), 80–96 (2005)

    Article  Google Scholar 

  43. Zhang, Y., Zhang, B., Coenen, F., Lu, W.: Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles. Mach. Vis. Appl. 24, 1405–1420 (2013)

    Article  Google Scholar 

  44. Zhang, Y., Zhang, B., Coenen, F., Xiao, J., Lu, W.: One-class kernel subspace ensemble for medical image classification. EURASIP J. Adv. Sig. Process. 17, 1–13 (2014)

    Google Scholar 

  45. Zheng, Y., Hijazi, M.H.A., Coenen, F.: Automated “Disease/No Disease” grading of age-related macular degeneration by an image mining approach. Investig. Ophthalmol. Vis. Sci. 53(13), 8310–8318 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wold like to thank the following whose ideas helped formulate the contents of this paper: (i) Abdulrahman Albarrak from the Department of Computer Science at The University of Liverpool, (ii) Ashraf Elsayed from the Department of Computer Science at the University of Alexandria, (iii) Marta García-Fiñana from the Department of Biostatistics at the University of Liverpool, (iv) Hanafi Hijazi from the School of Engineering and Information Technology at the University of Malaysia Sabah, (v) Vanessa Sluming from the School of Health Science at the University of Liverpool, (vi) Akadej Udomchaiporn from King Mongkut’s Institute of Technology Ladkrabang and (vii) Yalin Zheng from the department of Eye and Vision Science at the Royal Liverpool University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans Coenen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coenen, F., Dittakan, K. (2019). Image Representation for Image Mining: A Study Focusing on Mining Satellite Images for Census Data Collection. In: Fred, A., Dietz, J., Aveiro, D., Liu, K., Bernardino, J., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2016. Communications in Computer and Information Science, vol 914. Springer, Cham. https://doi.org/10.1007/978-3-319-99701-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99701-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99700-1

  • Online ISBN: 978-3-319-99701-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics