Skip to main content

Leakage-Resilient Chosen-Ciphertext Secure Functional Encryption from Garbled Circuits

  • Conference paper
  • First Online:
Information Security Practice and Experience (ISPEC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11125))

Abstract

At Asiacrypt 2013, Qin and Liu showed a leakage-resilient chosen-ciphertext attacks (LR-CCA) secure public-key encryption (PKE) from one-time lossy filter (OT-LF) and hash proof system (HPS), from which, combining garbled circuits (GC), we present an LR-CCA secure generic construction for single-key and single-ciphertext functional encryption (FE) via hash proof system (HPS) and one-time lossy filter (OT-LF). We bypass known obstacles in realizing leakage-resilient using garbled circuits that make a non-black-box use of the underlying cryptographic primitives. Efficient instantiations of DDH-based and DCR-based HPS and OT-LF indicate that our approach is practical in realizing LR-CCA secure FE scheme under the standard assumptions. Moreover, our constructions from the DDH and DCR assumptions result in the same leakage rate as Qin and Liu’s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Please contact the authors for it.

References

  1. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_6

    Chapter  Google Scholar 

  2. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prabhakaran, M., Sahai, A.: On the practical security of inner product functional encryption. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 777–798. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_35

    Chapter  Google Scholar 

  3. Agrawal, S., Agrawal, S., Prabhakaran, M.: Cryptographic agents: towards a unified theory of computing on encrypted data. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 501–531. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_17

    Chapter  Google Scholar 

  4. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_28

    Chapter  MATH  Google Scholar 

  5. Alwen, J., et al.: On the relationship between functional encryption, obfuscation, and fully homomorphic encryption. In: IMA International Conference on Cryptography and Coding, pp. 65–84 (2013)

    Chapter  Google Scholar 

  6. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_6

    Chapter  MATH  Google Scholar 

  7. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_32

    Chapter  MATH  Google Scholar 

  8. Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Cryptology ePrint Archive, Report 2015/776 (2015). http://eprint.iacr.org/2015/776

    Google Scholar 

  9. Barbosa, M., Farshim, P.: On the semantic security of functional encryption schemes. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 143–161. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_10

    Chapter  Google Scholar 

  10. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: possibility results, impossibility results and the quest for a general definition. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02937-5_12

    Chapter  Google Scholar 

  11. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25

    Chapter  Google Scholar 

  12. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: FOCS 2007, pp. 647–657 (2007)

    Google Scholar 

  13. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16

    Chapter  Google Scholar 

  14. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_29

    Chapter  Google Scholar 

  15. De Caro, A.D., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the achievability of simulation-based security for functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 519–535. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_29

    Chapter  Google Scholar 

  16. Chow, S.S.M., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient identity-based encryption from simple assumptions. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010, pp. 152–161 (2010)

    Google Scholar 

  17. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_4

    Chapter  Google Scholar 

  18. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_31

    Chapter  Google Scholar 

  19. Faonio, A., Venturi, D.: Efficient public-key cryptography with bounded leakage and tamper resilience. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 877–907. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_32

    Chapter  Google Scholar 

  20. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: Advance in FOCS 2013, pp. 40–49. IEEE (2013)

    Google Scholar 

  21. Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_27

    Chapter  Google Scholar 

  22. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)

    Google Scholar 

  23. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: STOC 2013, pp. 555–564 (2013)

    Google Scholar 

  24. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: Advance in STOC 2013, pp. 545–554 (2013)

    Google Scholar 

  25. Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized functionalities. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 325–351. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_13

    Chapter  Google Scholar 

  26. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Advance in ACM CCS 2006, pp. 89–98 (2006)

    Google Scholar 

  27. Halderman, J.A., et al.: Lest we remember: cold boot attacks on encryption keys. In: van Oorschot, P.C. (ed.) USENIX Security Symposium, pp. 45–60. USENIX Association (2008)

    Google Scholar 

  28. Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 520–536. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_31

    Chapter  Google Scholar 

  29. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_9

    Chapter  Google Scholar 

  30. Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption from hash proof system and one-time lossy filter. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 381–400. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_20

    Chapter  Google Scholar 

  31. Qin, B., Liu, S.: Leakage-flexible CCA-secure public-key encryption: simple construction and free of pairing. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 19–36. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_2

    Chapter  Google Scholar 

  32. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  33. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_27

    Chapter  Google Scholar 

  34. Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_33

    Chapter  Google Scholar 

  35. Yao, A.C.: Protocols for secure computations. In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press (1982)

    Google Scholar 

  36. Zhang, M., Shi, W., Wang, C., Chen, Z., Mu, Y.: Leakage-resilient attribute-based encryption with fast decryption: models, analysis and constructions. In: Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 75–90. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38033-4_6

    Chapter  Google Scholar 

Download references

Acknowledgements

The first author is supported by the National Natural Science Foundation of China (Grant Nos. NSFC61702007, NSFC61572318) and the National Key Research and Development Program of China (Grant No. 2017YFB0802000) and Other Foundations (Grant Nos. KJ2018A0533, ahnis20178002, KJ2017A519, 16ZB0140, LD14127X, ZRC2013380). The second author is supported by the National Key Research and Development Program of China (Grant No. 2017YFB0802000) and the National Natural Science Foundation of China (Grant Nos. NSFCU1705264, NSFC61133014, NSFC61472114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huige Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Chen, K., Liu, J.K., Hu, Z. (2018). Leakage-Resilient Chosen-Ciphertext Secure Functional Encryption from Garbled Circuits. In: Su, C., Kikuchi, H. (eds) Information Security Practice and Experience. ISPEC 2018. Lecture Notes in Computer Science(), vol 11125. Springer, Cham. https://doi.org/10.1007/978-3-319-99807-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99807-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99806-0

  • Online ISBN: 978-3-319-99807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics