Abstract
The goal of this paper is to describe a simple protocol based on passive stigmergy for agent interaction in a multiagent system, which can exhibit complex behavior, and to study the effects of alternative decisions, which can be seen as perturbations that can change the final state of the system. Several ways of visualizing the influence relations that the agents have on one another and the effects of alternative decisions are presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
An, L.: Modeling human decisions in coupled human and natural systems: review of agent-based models. Ecol. Model. 229, 25–36 (2012). https://doi.org/10.1016/j.ecolmodel.2011.07.010
Azuma, R., Daily, M., Furmanski, C.: A review of time critical decision making models and human cognitive processes. In: Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, Montana, USA (2006). https://doi.org/10.1109/aero.2006.1656041
Bogacz, R., Brown, E., Moehlis, J., Holmes, P., Cohen, J.D.: The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced choice tasks. Psychol. Rev. 113(4), 700–765 (2006)
Bruch, E., Atwell, J.: Agent-based models in empirical social research. Sociol. Methods Res. 44(2), 186–221 (2015). https://doi.org/10.1177/0049124113506405
Bruza, P.D., Wang, Z., Busemeyer, J.R.: Quantum cognition: a new theoretical approach to psychology. Trends Cogn. Educ. 19(7), 383–393 (2015). https://doi.org/10.1016/j.tics.2015.05.001
Busemeyer, J.R., Wang, Z.: What is quantum cognition, and how is it applied to psychology? Curr. Dir. Psychol. Sci. 24(3), 163–169 (2015). https://doi.org/10.1177/0963721414568663
Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591–646 (2009). https://doi.org/10.1103/revmodphys.81.591
Gelman, A., Katz, J., Tuerlinckx, F.: The mathematics and statistics of voting power. Stat. Sci. 17(4), 420–435 (2002). https://doi.org/10.1214/ss/1049993201
Grimm, V., et al.: Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310(5750), 987–991 (2005). https://doi.org/10.1126/science.1116681
Hawkins, G., Brown, S.D., Steyvers, M., Wagenmakers, E.J.: Context effects in multi-alternative decision making: empirical data and a Bayesian model. Cogn. Sci. 36, 498–516 (2012). https://doi.org/10.1111/j.1551-6709.2011.01221.x
Holland, O.E.: Multiagent systems: lessons from social insects and collective robotics. In: Adaptation, Coevolution and Learning in Multiagent Systems: Papers from the 1996 AAAI Spring Symposium, pp. 57–62, Menlo Park, California, USA. AAAI Press (1996)
Le Pira, M., Inturri, G., Ignaccolo, M., Pluchino, A., Rapisarda, A.: Finding shared decisions in stakeholder networks: an agent-based approach. Phys. A 466, 277–287 (2017). https://doi.org/10.1016/j.physa.2016.09.015
Leon, F.: A multiagent system generating complex behaviours. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013. LNCS (LNAI), vol. 8083, pp. 154–164. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40495-5_16
Leon, F.: A novel interaction protocol of a multiagent system for the study of alternative decisions. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9875, pp. 3–12. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45243-2_1
Leon, F.: Analysis of behavior stability in a multiagent system. In: Frank, T.D. (ed.) New Research on Collective Behavior, Psychology Research Progress. Nova Publishers, New York (2016)
Leon, F.: Design and evaluation of a multiagent interaction protocol generating behaviours with different levels of complexity. Neurocomputing 146, 173–186 (2014). https://doi.org/10.1016/j.neucom.2014.04.058
Leon, F.: Stabilization methods for a multiagent system with complex behaviours. Comput. Intell. Neurosci. Article Number 236285 (2015). https://doi.org/10.1155/2015/236285
Müller, B., et al.: Describing human decisions in agent-based models − ODD + D, an extension of the ODD protocol. Environ. Model. Softw. 48, 37–48 (2013). https://doi.org/10.1016/j.envsoft.2013.06.003
Reches, S., Talman, S., Kraus, S.: A statistical decision-making model for choosing among multiple alternatives. In: Proceedings of AAMAS 2007, Honolulu, Hawaii, USA (2007)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pearson, London (2009)
Rustichini, A.: Dual or unitary system? Two alternative models of decision making. Cogn. Affect. Behav. Neurosci. 8(4), 355–362 (2008). https://doi.org/10.3758/cabn.8.4.355
Smith, J.M.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)
Stüttgen, P., Boatwright, P., Monroe, R.T.: A satisficing choice model. Mark. Sci. 31(6), 878–899 (2012)
Vidal, J.: Fundamentals of multiagent systems with NetLogo examples. http://jmvidal.cse.sc.edu/papers/mas.pdf (2010)
Vul, E., Goodman, N., Griffiths, T.L., Tenenbaum, J.B.: One and done? Optimal decisions from very few samples. Cogn. Sci. 38(4), 599–637 (2014). https://doi.org/10.1111/cogs.12101
Xuan, P., Lesser, V., Zilberstein, S.: Communication decisions in multi-agent cooperation: model and experiments. In: Proceedings of the Fifth International Conference on Autonomous Agents, Montreal, Quebec, Canada, pp. 616–623. ACM, New York (2001). https://doi.org/10.1145/375735.376469
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Leon, F. (2018). Analyzing the Effects of Alternative Decisions in a Multiagent System with Stigmergy-Based Interactions. In: Thanh Nguyen, N., Kowalczyk, R. (eds) Transactions on Computational Collective Intelligence XXX. Lecture Notes in Computer Science(), vol 11120. Springer, Cham. https://doi.org/10.1007/978-3-319-99810-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-99810-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99809-1
Online ISBN: 978-3-319-99810-7
eBook Packages: Computer ScienceComputer Science (R0)