Skip to main content

A Fuzzy Logic-Based Anticipation Car-Following Model

  • Chapter
  • First Online:
Transactions on Computational Collective Intelligence XXX

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 11120))

Abstract

The human drivers in a real world decide and act according to their experience, logic, and judgments. In contrast, mathematical models act according to mathematical equations that ensure the precision of decision to take. However, these models do not provide a promising simulation and they do not reflect the human behaviors. In this context, we present in this paper a completely artificial intelligence anticipation model of car-following problem based on fuzzy logic theory, in order to estimate the velocity of the leader vehicle in near future. The results of experiments, which were conducted by using Next Generation Simulation (NGSIM) dataset to validate the proposed model, indicate that the vehicle trajectories simulated based on the new model are in compliance with the actual vehicle trajectories in terms of deviation and gap distance. In addition, the road security is assured in terms of harmonization between gap distance and security distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aghabayk, K., Sarvi, M., Young, W.: A state-of-the-art review of car-following models with particular considerations of heavy vehicles. Transp. Rev. Transnatl. Transdiscipl. J. 35(1), 82–105 (2015)

    Article  Google Scholar 

  2. Bando, M., Hasebe, K., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)

    Article  Google Scholar 

  3. Barcelo, J., Ferrer, J., Grau, R., Florian, M., Chabini, E.: A route based version of the AIMSUN2 micro-simulation model. In: World Congress on ITS, vol. 4. Steps Forward. Intelligent Transport Systems World Congress (1995)

    Google Scholar 

  4. Bennajeh, A., Kebair, F., Ben Said, L., Aknine, S.: Multiagent cooperation for decision-making in the car-following behavior. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9875, pp. 391–401. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45243-2_36

    Chapter  Google Scholar 

  5. Brackstone, M., McDonald, M.: Car-following: a historical review. Transport. Res. Part F 2(4), 181–196 (2005)

    Article  Google Scholar 

  6. Broqua, F., Lerner, G., Mauro, V., Morello, E.: Cooperative driving: basic concepts and a first assessment of intelligent cruise control. In: Advanced Telematics in Road Transport, pp. 908–929 (1991)

    Google Scholar 

  7. Bullen, A.G.R.: Development of compact micro-simulation for analysing freeway operations and design. Transp. Res. Rec. J. Transp. Res. Board 841, 15–18 (1982)

    Google Scholar 

  8. Champion, A., Espie, S., Auberlet, J.M.: Behavioural road traffic simulation with archisim. In: Proceedings of the Summer Computer Simulation Conference, Orlando (2001)

    Google Scholar 

  9. Champion, A., Zhang, M.Y., Auberlet, J.M., Espie, S.: Behavioural simulation: towards highdensity network traffic studies. In: Proceedings of the international conference on traffic and transportation studies, Guilin, China (2002)

    Google Scholar 

  10. Chen, Y., Wang, C.: Vehicle safety distance warning system: a novel algorithm for vehicle safety distance calculating between moving cars. In: Vehicular Technology Conference. IEEE (2007)

    Google Scholar 

  11. De-Barros, L., Massad, E., Ortega, N.R.S., Claudio, J.S.: Fuzzy Logic in Action: Applications in Epidemiology and Beyond. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69094-8

    Book  MATH  Google Scholar 

  12. Deng, H., Michael-Zhang, H.: Driver anticipation in car following. Transp. Res. Rec. J. Transp. Res. Board 2316, 31–37 (2012)

    Article  Google Scholar 

  13. Doniec, A., Mandiau, R., Piechowiak, S., Espi, S.: A behavioral multi-agent model for road traffic simulation. Eng. Appl. Artif. Intell. 21(8), 1443–1454 (2008)

    Article  Google Scholar 

  14. Edie, L.: Traffic Flow theories (1974)

    Google Scholar 

  15. Elefteriadou, L.: An Introduction to Traffic Flow Theory. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-8435-6

    Book  MATH  Google Scholar 

  16. Espie, S., Saad, F., Schnetzler, B., Bourlier, F., Djemame, N.: Microscopic traffic simulation and driver behaviour modelling: the ARCHISIM project. In: The Strategic Highway Research Program and Traffic Safety on Two Continents, Lille, France (1994)

    Google Scholar 

  17. Federal-Highway-Administration: Traffic Analysis and Tools Program (2005). http://www.ngsim-community.org

  18. Forbes, T.W.: Human factor considerations in traffic ow theory. Highw. Res. Rec. 15, 60–66 (1963)

    Google Scholar 

  19. Forbes, T.W., Zagorski, H.J., Holshouser, E.L., Deterline, W.A.: Measurements of driver reactions to tunnel conditions. Res. Board 37, 345–357 (1958)

    Google Scholar 

  20. Ge, H., Dai, S., Xue, Y., Dong, L.: Stabilization analysis and modified korteweg-de vries equation in a cooperative driving system. Phys. Rev. E 71(6), 066119 (2005)

    Article  MathSciNet  Google Scholar 

  21. Gipps, P.G.: A behavioural car-following model for computer simulation. Transp. Res. Part B: Methodol. 15, 105–111 (1981)

    Article  Google Scholar 

  22. Gipps, P.G.: A model of the structure of lane changing decisions. Transp. Res. 20(5), 403–414 (1986)

    Article  Google Scholar 

  23. Hadouaj, E., S., Espie, S., Drogoul, A.: To combine reactivity and anticipation: the case of conflicts resolution in a simulated road traffic. In: The Second International Workshop on Multi-Agent Based Simulation, Boston (2000)

    Google Scholar 

  24. Hao, H., Ma, W., Xu, H.: A fuzzy logic-based multi-agent car-following model. Transp. Res. Part C 69, 477–496 (2015)

    Article  Google Scholar 

  25. Helbing, D., Tilch, B.: Generalized force model of traffic dynamics. Phys. Rev. E 58, 133–138 (2001)

    Article  Google Scholar 

  26. Herman, R.: Technology, human interaction, and complexity: reflection on vehicular traffic science. Oper. Res. 40(2), 199–212 (1992)

    Article  Google Scholar 

  27. Jiang, R., Wu, Q.S., Zhu, Z.J.: Full velocity difference model for a car-following theory. Phys. Rev. 64(1), 017101 (2001)

    Google Scholar 

  28. Johnsson, G., Rumer, K.: Drivers braking reaction times. Hum. Factors J. Hum. Factors Ergon. Soc. 13, 23–27 (1971)

    Article  Google Scholar 

  29. Leplat, J., Hoc, J.M.: Subsequent verbalization in the study of cognitive processes. Ergonomics 24(10), 743–755 (1981). https://doi.org/10.1080/00140138108924896

    Article  Google Scholar 

  30. Li, Y.F., et al.: Modeling and simulation for microscopic traffic flow based on multiple headway, velocity and acceleration difference. Nonlinear Dyn. 66, 15–28 (2011)

    Article  MathSciNet  Google Scholar 

  31. Liu, R., Van, V., Wating, D.P.: Dracula: dynamic route assignment combining user learning and microsimulation. Proceedings of PTRC Summer Annual Conference

    Google Scholar 

  32. May, A.D.: Gap availability studies. Highw. Res. Board Rec. 72, 105–136 (1965)

    Google Scholar 

  33. May, A.: Traffic flow fundamentals (1990)

    Google Scholar 

  34. McDonald, M., Brackstone, M., Jeffery, D.: Simulation of lane usage characteristics on 3 lane motorways. In: Automotive Technology and Automation, ISATA Conference (1994)

    Google Scholar 

  35. McDonald, M., Wu, J., Brackstone, M.: Development of a fuzzy logic based microscopic motorway simulation mode. In: Intelligent Transportation System. IEEE (1997)

    Google Scholar 

  36. McGrath, R.: Transportation and Traffic Engineering Handbook (1982)

    Google Scholar 

  37. Marsault, M.N., Apvrille, J.M.: Experimentation de logique floue (2001)

    Google Scholar 

  38. Olson, P.L.: Parameters affecting stopping sight distance. National Cooperative Highway Research Program Report (1984)

    Google Scholar 

  39. Peng, G.H., Sun, D.H.: A dynamical model of carfollowing with the consideration of the multiple information of preceding cars. Phys. Lett. A 374, 1694–1698 (2010)

    Article  Google Scholar 

  40. Rosen, R.: Anticipatory systems. Philosophical Mathematical and Methodological Foundation (1985)

    Chapter  Google Scholar 

  41. Saad, F.: Conduite en file: Representation des situations critiques selon l’exprience des conducteurs. Technical report, Institut national de recherche sur les transports (1992)

    Google Scholar 

  42. Saifuzzaman, M., Zheng, Z.: Incorporating human-factors in car-following models: a review of recent developments and research needs. Transp. Res. Part C Emerg. Technol. 48, 379–403 (2014)

    Article  Google Scholar 

  43. Seward, J.P.: An experimental analysis of latent learning. J. Exp. Psychol. 39(2), 177 (1949)

    Article  Google Scholar 

  44. Tolman, E.: Purposive behavior in animals and men (1932)

    Google Scholar 

  45. Wilson, R.: An analysis of Gipps’s car-following model of highway traffic. IMA J. Appl. Math. 66, 509–537 (2001)

    Article  MathSciNet  Google Scholar 

  46. Yager, R.R., Zadeh, L.A. (eds.): An Introduction to Fuzzy Logic Applications in Intelligent Systems. The Springer International Series in Engineering and Computer Science. Springer, New York (1992). https://doi.org/10.1007/978-1-4615-3640-6

    Book  MATH  Google Scholar 

  47. Yi-Rong, K., Di-Hua, S., Shu-Hong, Y.: A new car-following model considering driver’s individual anticipation behavior. Nonlinear Dyn. 82, 1293–1302 (2015)

    Article  MathSciNet  Google Scholar 

  48. Yu, L., Shi, Z.K., Zhou, B.: Kink-antikink density wave of an extended car-following model in a cooperative driving system. Commun. Nonlinear Sci. Numer. Simul. 13, 2167–2176 (2008)

    Article  Google Scholar 

  49. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  50. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8, 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  51. Zheng, L.J., Tian, C., Sun, D.H., Liu, W.N.: A new car-following model with consideration of anticipation driving behavior. Nonlinear Dyn. 70(2), 1205–1211 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anouer Bennajeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bennajeh, A., Bechikh, S., Said, L.B., Aknine, S. (2018). A Fuzzy Logic-Based Anticipation Car-Following Model. In: Thanh Nguyen, N., Kowalczyk, R. (eds) Transactions on Computational Collective Intelligence XXX. Lecture Notes in Computer Science(), vol 11120. Springer, Cham. https://doi.org/10.1007/978-3-319-99810-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99810-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99809-1

  • Online ISBN: 978-3-319-99810-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics