Abstract
In this paper, an original enhanced harmony search algorithm (HS-TTP) is proposed for the well-known NP-hard traveling tournament problem (TTP) in sports scheduling. TTP is concerned with finding a tournament schedule that minimizes the total distances traveled by the teams. TTP is well-known, and an important problem within the collective sports communities since a poor optimization in TTP can cause heavy losses in the budget of managing the league’s competition. In order to apply HS to TTP, we use a largest-order-value rule to transform harmonies from real vectors to abstract schedules. We introduce a new heuristic for rearranging the scheduled rounds which give us a significant enhancement in the quality of the solutions. Further, we use a local search as a subroutine in HS to improve its intensification mechanism. The overall method (HS-TTP) is evaluated on publicly available standard benchmarks and compared with the state-of-the-art techniques. Our approach succeeds in finding optimal solutions for several instances. For the other instances, the general deviation from optimality is equal to 4.45%. HS-TTP is able to produce high-quality results compared to existing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Challenge traveling tournament instances. http://mat.tepper.cmu.edu/TOURN/. Accessed 29 Jan 2016
Anagnostopoulos, A., Michel, L., Hentenryck, P.V., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. J. Sched. 9(2), 177–193 (2006)
Axsäter, S.: Planning order releases for an assembly system with random operation times. In: Liberopoulos, G., Papadopoulos, C.T., Tan, B., Smith, J.M., Gershwin, S.B. (eds.) Stochastic Modeling of Manufacturing Systems, pp. 333–344. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29057-5_14
Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6(2), 154–160 (1994)
Biajoli, F.L., Lorena, L.A.N.: Clustering search approach for the traveling tournament problem. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, pp. 83–93. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76631-5_9
Cáceres, L.P., Riff, M.C.: AISTTP: an artificial immune algorithm to solve traveling tournament problems. Int. J. Comput. Intell. Appl. 11(01), 1250008 (2012)
de Carvalho, M.A.M., Lorena, L.A.N.: New models for the mirrored traveling tournament problem. Comput. Ind. Eng. 63(4), 1089–1095 (2012)
Chen, P.C., Kendall, G., Berghe, G.V.: An ant based hyper-heuristic for the travelling tournament problem. In: IEEE Symposium on Computational Intelligence in Scheduling, SCIS 2007, pp. 19–26. IEEE (2007)
Choubey, N.S.: A novel encoding scheme for traveling tournament problem using genetic algorithm. IJCA 2(7), 79–82 (2010). Special Issue on Evolutionary Computation
Costa, F.N., Urrutia, S., Ribeiro, C.C.: An ils heuristic for the traveling tournament problem with predefined venues. Ann. Oper. Res. 194(1), 137–150 (2012)
Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. J. Heuristics 13(2), 189–207 (2007)
Easton, K., Nemhauser, G., Trick, M.: The traveling tournament problem description and benchmarks. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 580–584. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45578-7_43
Gao, K.Z., Suganthan, P.N., Pan, Q.K., Chua, T.J., Cai, T.X., Chong, C.S.: Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives. J. Intell. Manuf. 27(2), 363–374 (2016)
Geem, Z.W.: Optimal scheduling of multiple dam system using harmony search algorithm. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 316–323. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73007-1_39
Geem, Z.W.: Music-Inspired Harmony Search Algorithm: Theory and Applications. SCI, vol. 191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00185-7
Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)
Geem, Z.W., Yoon, Y.: Harmony search optimization of renewable energy charging with energy storage system. Int. J. Electr. Power Energy Syst. 86, 120–126 (2017)
Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016). https://doi.org/10.1007/s10479-014-1586-6
Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)
Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Ann. Oper. Res. 218(1), 237–247 (2014)
Irnich, S.: A new branch-and-price algorithm for the traveling tournament problem. Eur. J. Oper. Res. 204(2), 218–228 (2010)
Januario, T., Urrutia, S., Ribeiro, C.C., De Werra, D.: Edge coloring: a natural model for sports scheduling. Eur. J. Oper. Res. 254(1), 1–8 (2016)
Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S.: Scheduling in sports: an annotated bibliography. Comput. Oper. Res. 37(1), 1–19 (2010)
Khelifa, M., Boughaci, D.: A variable neighborhood search method for solving the traveling tournaments problem. Electron. Notes Discret. Math. 47, 157–164 (2015)
Khelifa, M., Boughaci, D.: Hybrid harmony search combined with variable neighborhood search for the traveling tournament problem. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9875, pp. 520–530. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45243-2_48
Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992)
Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. Eur. J. Oper. Res. 174(3), 1459–1478 (2006)
Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579 (2007)
Marković, D., Petrović, G., Ćojbašić, Ž., Marinković, D.: A comparative analysis of metaheuristic maintenance optimization of refuse collection vehicles using the Taguchi experimental design. Trans. FAMENA 36(4), 25–38 (2013)
Padberg, M.: Harmony search algorithms for binary optimization problems. In: Klatte, D., Lüthi, H.J., Schmedders, K. (eds.) Operations Research Proceedings 2011, pp. 343–348. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29210-1_55
Qian, B., Wang, L., Hu, R., Huang, D., Wang, X.: A DE-based approach to no-wait flow-shop scheduling. Comput. Ind. Eng. 57(3), 787–805 (2009)
Rasmussen, R.V., Trick, M.A.: The timetable constrained distance minimization problem. Ann. Oper. Res. 171(1), 45 (2009)
Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament problem. Eur. J. Oper. Res. 179(3), 775–787 (2007)
Rossi-Doria, O., et al.: A comparison of the performance of different metaheuristics on the timetabling problem. In: Burke, E., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 329–351. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45157-0_22
Saka, M.: Optimum design of steel sway frames to BS5950 using harmony search algorithm. J. Constr. Steel Res. 65(1), 36–43 (2009)
Sivasubramani, S., Swarup, K.: Multi-objective harmony search algorithm for optimal power flow problem. Int. J. Electr. Power Energy Syst. 33(3), 745–752 (2011)
Thielen, C., Westphal, S.: Complexity of the traveling tournament problem. Theor. Comput. Sci. 412(4–5), 345–351 (2011)
Uthus, D.C., Riddle, P.J., Guesgen, H.W.: An ant colony optimization approach to the traveling tournament problem. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 81–88. ACM (2009)
Van Hentenryck, P., Vergados, Y.: Population-based simulated annealing for traveling tournaments. In: Proceedings of the National Conference on Artificial Intelligence, vol. 22, p. 267. MIT Press, Cambridge, London (1999). AAAI Press, Menlo Park (2007)
Wang, C.M., Huang, Y.F.: Self-adaptive harmony search algorithm for optimization. Expert. Syst. Appl. 37(4), 2826–2837 (2010)
Wang, L., Pan, Q.K., Tasgetiren, M.F.: Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms. Expert. Syst. Appl. 37(12), 7929–7936 (2010)
de Werra, D.: Some models of graphs for scheduling sports competitions. Discret. Appl. Math. 21(1), 47–65 (1988)
Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Ann. Oper. Res. 218(1), 347–360 (2014)
Weyland, D.: A rigorous analysis of the harmony search algorithm: how the research community can be. In: Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and Trends: Advancements and Trends, p. 72 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Khelifa, M., Boughaci, D., Aïmeur, E. (2018). Evolutionary Harmony Search Algorithm for Sport Scheduling Problem. In: Thanh Nguyen, N., Kowalczyk, R. (eds) Transactions on Computational Collective Intelligence XXX. Lecture Notes in Computer Science(), vol 11120. Springer, Cham. https://doi.org/10.1007/978-3-319-99810-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-99810-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99809-1
Online ISBN: 978-3-319-99810-7
eBook Packages: Computer ScienceComputer Science (R0)