Abstract
Prolonged climate change contributes to an increase in the local concentrations of O3 and PMx in the atmosphere, influencing the seasonality and duration of air pollution incidents. Air pollution in modern urban centers such as Athens has a significant impact on human activities such as industry and transport. During recent years the economic crisis has led to the burning of timber products for domestic heating, which adds to the burden of the atmosphere with dangerous pollutants. In addition, the topography of an area in conjunction with the recording of meteorological conditions conducive to atmospheric pollution, act as catalytic factors in increasing the concentrations of primary or secondary pollutants. This paper introduces an innovative hybrid system of predicting air pollutant values (IHAP) using Soft computing techniques. Specifically, Self-Organizing Maps are used to extract hidden knowledge in the raw data of atmospheric recordings and Fuzzy Cognitive Maps are employed to study the conditions and to analyze the factors associated with the problem. The system also forecasts future air pollutant values and their risk level for the urban environment, based on the temperature and rainfall variation as derived from sixteen CMIP5 climate models for the period 2020–2099.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amer, M., Jetter, A.J., Daim, T.U.: Scenario planning for the national wind energy sector through fuzzy cognitive maps. In: Proceedings of PICMET 2013: Technology Management in the IT-Driven Services, pp. 2153–2162. IEEE, San Jose (2013)
Anezakis, V.-D., Dermetzis, K., Iliadis, L., Spartalis, S.: Fuzzy cognitive maps for long-term prognosis of the evolution of atmospheric pollution, based on climate change scenarios: the case of Athens. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9875, pp. 175–186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45243-2_16
Anezakis, V.-D., Iliadis, L., Demertzis, K., Mallinis, G.: Hybrid soft computing analytics of cardiorespiratory morbidity and mortality risk due to air pollution. In: Dokas, I., Bellamine-Ben Saoud, N., Dugdale, J., Díaz, P. (eds.) Proceedings of Information Systems for Crisis Response and Management in Mediterranean Countries, ISCRAM-med 2017, Lecture Notes in Business Information Processing, (LNCS), vol. 301, pp. 87–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67633-3_8
Bougoudis, I., Demertzis, K., Iliadis, L.: Fast and low cost prediction of extreme air pollution values with hybrid unsupervised learning. Integr. Comput. Aided Eng. 23(2), 115–127 (2016). https://doi.org/10.3233/ica-150505
Bougoudis, I., Demertzis, K., Iliadis, L.: HISYCOL a hybrid computational intelligence system for combined machine learning: the case of air pollution modeling in Athens. Neural Comput. Appl. 27(5), 1191–1206 (2015). https://doi.org/10.1007/s00521-015-1927-7
Bougoudis, I., Demertzis, K., Iliadis, L., Anezakis, V.-D., Papaleonidas, A.: Semi-supervised hybrid modeling of atmospheric pollution in urban centers. In: Jayne, C., Iliadis, L. (eds.) EANN 2016. CCIS, vol. 629, pp. 51–63. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44188-7_4
Bougoudis, I., Demertzis, K., Iliadis, L., Anezakis, V.D., Papaleonidas, A.: FuSSFFra, a fuzzy semi-supervised forecasting framework: the case of the air pollution in Athens. Neural Comput. Appl. 29, 375–388 (2017). https://doi.org/10.1007/s00521-017-3125-2
Bougoudis, I., Iliadis, L., Papaleonidas, A.: Fuzzy inference ANN ensembles for air pollutants modeling in a major urban area: the case of Athens. In: Mladenov, V., Jayne, C., Iliadis, L. (eds.) EANN 2014, CCIS, vol. 459, pp. 1–14. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-11071-4_1
Bougoudis, I., Iliadis, L., Spartalis, S.: Comparison of self organizing maps clustering with supervised classification for air pollution data sets. In: Iliadis, L., Maglogiannis, L., Papadopoulos, H. (eds.) AIAI 2014, IFIP AICT, vol. 436, pp. 424–435. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44654-6_42
Fons, S., Achari, G., Ross, T.: A fuzzy cognitive mapping analysis of the impacts of an eco-industrial park. J. Intell. Fuzzy Syst. 15(2), 75–88 (2004)
García, C.G., Ortiz, I.P.: Stability analysis of climate system using fuzzy cognitive maps. In: Obaidat, M.S., Filipe, J., Kacprzyk, J., Pina, N. (eds.) Simulation and Modeling Methodologies, Technologies and Applications. AISC, vol. 256, pp. 211–222. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03581-9_15
Glorennec, P.Y.: Forecasting ozone peaks using self-organizing maps and fuzzy logic. In: Sportisse, B. (ed.) APMS 2001, pp. 544–550. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04956-3_52
Gordaliza, J.A., Flórez, R.E.V.: Using fuzzy cognitive maps to support complex environmental issues learning. In: Proceedings of New Perspectives in Science Education Conference, 2nd edn (2013)
Hájek, P., Olej, V.: Air quality modeling by Kohonen’s self-organizing feature maps and LVQ neural networks. WSEAS Trans. Environ. Dev. 4(1), 45–55 (2008)
Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, New York (2009)
Iliadis, L., Spartalis, S., Paschalidou, A., Kassomenos, P.: Artificial neural network modeling of the surface ozone concentration. Int. J. Comput. Appl. Math. 2(2), 125–138 (2007)
Jiang, N., Betts, A., Riley, M.: Summarising climate and air quality (ozone) data on self-organising maps: a Sydney case study. Environ. Monit. Assess. 188(2), 103 (2016). https://doi.org/10.1007/s10661-016-5113-x
Karatzas, K.D., Voukantsis, D.: Studying and predicting quality of life atmospheric parameters with the aid of computational intelligence methods. In: Sànchez-Marrè, M., Béjar, J., Comas, J., Rizzoli, A., Guariso, G. (eds.) International Environmental Modeling and Software Society (iEMSs 2008), vol. 2. pp. 1133–1139. iEMSs (2008)
Khedairia, S., Khadir, M.T.: Impact of clustered meteorological parameters on air pollutants concentrations in the region of Annaba, Algeria. Atmos. Res. 113, 89–101 (2012). https://doi.org/10.1016/j.atmosres.2012.05.002
Kohonen, T.: Self-Organization and Associative Memory, 3rd edn. Springer, Berlin (1989). https://doi.org/10.1007/978-3-642-88163-3
Li, S.T., Chou, S.W., Pan, J.J.: Multi-resolution spatio-temporal data mining for the study of air pollutant regionalization. In: Proceedings of the 33rd Hawaii International Conference on System Sciences, USA, p. 33. IEEE (2000)
Luiz, J., Muller, E.: Greenhouse gas emission reduction under the Kyoto protocol: the South African example. Int. Bus. Econ. Res. J. 7, 75–92 (2008)
Mesa-Frias, M., Chalabi, Z., Foss, A.M.: Assessing framing assumptions in quantitative health impact assessments: a housing intervention example. Environ. Int. 59, 133–140 (2013). https://doi.org/10.1016/j.envint.2013.06.002
Mourhir, A., Rachidi, T., Papageorgiou, E.I., Karim, M., Alaoui, F.S.: A cognitive map framework to support integrated environmental assessment. Environ. Model. Softw. 77, 81–94 (2016). https://doi.org/10.1016/j.envsoft.2015.11.018
Neme, A., Hernández, L.: Visualizing patterns in the air quality in Mexico City with self-organizing maps. In: Laaksonen, J., Honkela, T. (eds.) WSOM 2011. LNCS, vol. 6731, pp. 318–327. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21566-7_32
Olej, V., Hájek, P.: Air quality modelling by Kohonen’s self-organizing feature maps and intuitionistic fuzzy sets. In: Proceedings of the 12th IASTED International Conference on Artificial Intelligence and Soft Computing, ASC 2008, Spain, pp. 22–27. Elsevier B.V. (2008)
Papageorgiou, E.I., Salmeron, J.L.: A review of fuzzy cognitive maps research during the last decade. IEEE Trans. Fuzzy Syst. 21(1), 66–79 (2013). https://doi.org/10.1109/TFUZZ.2012.2201727
Papageorgiou, E.I., Salmeron, J.L.: Methods and algorithms for fuzzy cognitive map-based modeling. Intell. Syst. Ref. Libr. 54, 1–28 (2014). https://doi.org/10.1007/978-3-642-39739-4_1
Paschalidou, A.: University of Ioannina, Ph.d. thesis development of box model for the air pollution forecasting in medium size cities (2007). (in Greek)
Pathinathan, T., Ponnivalavan, K.: The study of hazards of plastic pollution using induced fuzzy cognitive maps (IFCMS). J. Comput. Algorithm 3, 671–674 (2014)
Paz-Ortiz, I., Gay-García, C.: Fuzzy cognitive mapping and nonlinear Hebbian learning for the qualitative simulation of the climate system, from a planetary boundaries perspective. In: Obaidat, M.S., Ören, T., Kacprzyk, J., Filipe, J. (eds.) Simulation and Modeling Methodologies, Technologies and Applications. AISC, vol. 402, pp. 295–312. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26470-7_15
Pearce, J.L., et al.: Exploring associations between multipollutant day types and asthma morbidity: epidemiologic applications of self-organizing map ambient air quality classifications. Environ. Health Glob. Access Sci. Sour. 14(1), 1–12 (2015). https://doi.org/10.1186/s12940-015-0041-8
Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. Am. Stat. 42(1), 59–66 (1988). https://doi.org/10.1080/00031305.1988.10475524
Salmeron, J.L., Froelich, W.: Dynamic optimization of fuzzy cognitive maps for time series forecasting. Knowl. Based Syst. 105, 29–37 (2016). https://doi.org/10.1016/j.knosys.2016.04.023
Scafetta, N., Willson, R.C.: ACRIM total solar irradiance satellite composite validation versus TSI proxy models. Astrophys. Space Sci. 350(2), 421–442 (2014). https://doi.org/10.1007/s10509-013-1775-9
Tamas, W., Notton, G., Paoli, C., Nivet, M.L., Voyant, C.: Hybridization of air quality forecasting models using machine learning and clustering: an original approach to detect pollutant peaks. Aerosol Air Qual. Res. 16(2), 405–416 (2016). https://doi.org/10.4209/aaqr.2015.03.0193
Vidal, R., Salmeron, J.L., Mena, A., Chulvi, V.: Fuzzy cognitive map-based selection of TRIZ trends for eco-innovation of ceramic industry products. J. Clean. Prod. 107, 202–214 (2015). https://doi.org/10.1016/j.jclepro.2015.04.131
Zhang, H., Song, J., Su, C., He, M.: Human attitudes in environmental management: fuzzy cognitive maps and policy option simulations analysis for a coal-mine ecosystem in China. J. Environ. Manag. 115, 227–234 (2013). https://doi.org/10.1016/j.jenvman.2012.09.032
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Iliadis, L., Anezakis, VD., Demertzis, K., Spartalis, S. (2018). Hybrid Soft Computing for Atmospheric Pollution-Climate Change Data Mining. In: Thanh Nguyen, N., Kowalczyk, R. (eds) Transactions on Computational Collective Intelligence XXX. Lecture Notes in Computer Science(), vol 11120. Springer, Cham. https://doi.org/10.1007/978-3-319-99810-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-99810-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99809-1
Online ISBN: 978-3-319-99810-7
eBook Packages: Computer ScienceComputer Science (R0)