Abstract
The Hermes project [1] demonstrated the usefulness of on site predictive simulations of probable evacuation scenarios for security personnel. However, the hardware needed was prohibitively expensive [2]. For use in crowd management, the software has to run on available computers. The CA methods, which are fast enough, have well known problems with treating corners and turns. The present paper shows how a standard CA method can be modified to produce a realistic movement of people around bends and obstacles by changing the standard floor field. This can be done adaptively allowing for the momentary situation using simple predictions for the immediate future. The approach has one or two tuning parameter that have an obvious meaning and can therefore be set correctly by people not familiar with the inner process of a CA simulation. With this, a high end laptop can simulate more than 100 000 persons faster than real time, which should be enough for most occasions. It is intended to integrate the method into the tool JuPedSim [23].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Holl, S., Seyfried, A.: Hermes - an evacuation assistant for mass events. inSiDe 7, 60–61 (2009)
Kemloh, U., Steffen, B., Seyfried, A., Chraibi, M.: Parallel real time computation of large scale pedestrian evacuations. Adv. Eng. Softw. 60–61, 98–103 (2013)
Lämmel, G., Steffen, B.: A fast simulation approach for urban areas. Transp. Res. Board 93, 84–98 (2014)
Dieckmann, D.: Die Feuersicherheit in Theatern. Jung, München (1911)
Fruin, J.J.: Pedestrian Planning and Design. Elevator World, New York (1971)
Predtetschenski, W.M., Milinski, A.I.: Personenströme in Gebäuden - Berechnungsmethoden für die Projektierung. Verlagsgesellschaft Rudolf Müller, Köln-Braunsfeld (1971)
Lämmel, G., Grether, D., Nagel, K.: The representation and implementation of time-dependent inundation in large-scale microscopic evacuation simulations. Transp. Res. C 18, 84–98 (2010)
Lämmel, G., Steffen, B., Seyfried, A.: Large scale and microscopic: a fast simulation approach for urban areas Washington. Transportation Research Board Annual Meeting Online, 14–3890 (2014)
Lämmel, G., Chraibi, M., Kemloh Wagoum, A.U.: Hybrid multimodal and intermodal transport simulation: case study on large-scale evacuation planning. Transp. Res. Rec.: J. Transp. Res. Board 2561, 1–8 (2016)
Chraibi, M., Steffen, B.: Multiscale simulation of pedestrians for efficient predictive modeling in large events. J. Cell. Autom. 11(4), 299–310 (2016)
Blue, V.J., Adler, J.L.: Cellular automata microsimulation of bi-directional pedestrian flows. J. Transp. Res. B 1678, 135–141 (2000)
Galea, E.R., Gwynne, S., Lawrence, P.J., Filippidis, L., Blackspields, D., Cooney, D.: buildingEXODUS V 4.0 - User Guide and Technical Manual (2004)
Klüpfel, H., et al.: Handbuch PedGo 2, PedGo Editor 2 (2005)
Zhang, J., Klinsch, W., Rupprecht, T., Schadschneider, A.: Empirical study of turning and merging of pedestrian streams in T-junction. In: Fourth International Symposium on Agent-Based Modeling and Simulation (ABModSim-4), Vienna, Austria (2012)
Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Phys. A 312, 260–276 (2002)
Steffen, B., Seyfried, A.: Modelling of pedestrian movement around 90\(^\circ \) and 180\(^\circ \) bends. In: Advanced Research Workshop “Fire Protection and Life Safety in Buildings and Transportation Systems", pp. 243–253 (2009)
Molnár, P.: Modellierung und Simulation der Dynamik von Fußgängerströmen. Shaker, Aachen (1996)
Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82, 046111 (2010)
Rogsch, C., Klingsch, W., Seyfried, A., Weigel, H.: Prediction accuracy of evacuation times for high-rise buildings and simple geometries by using different software-tools. In: Appert-Rolland, C., Chevoir, F., Gondret, P., Lassarre, S., Lebacque, J.P., Schreckenberg, M. (eds.) Traffic and Granular Flow, pp. 395–400. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77074-9_42
Seyfried, A., et al.: Enhanced empirical data for the fundamental diagram and the flow through bottlenecks. In: Klingsch, W., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics, pp. 145–156. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-04504-2_11
Schadschneider, A., Eilhardt, C., Nowak, S., Will, R.: Towards a calibration of the floor field cellular automaton. In: Peacock, R., Kuligowski, E., Averill, J. (eds.) Pedestrian and Evacuation Dynamics, pp. 557–566. Springer, Heidelberg (2010). https://doi.org/10.1007/978-1-4419-9725-8_50. ein Artikel allgemein zu unseren Extraktionsmethoden ist
Boltes, M., Seyfried, A.: Collecting pedestrian trajectories. Neurocomputing 100, 127–133 (2013). Special Issue on Behaviours in Video
Chraibi, M., Zhang, J.: JuPedSim: an open framework for simulating and analyzing the dynamics of pedestrians SUMO2016 - Traffic, Mobility, and Logistics. In: Proceedings SUMO Conference 2016, SUMO2016, Berlin, Germany, 23–25 May 2016, vol. 30, pp. 127–134. Deutsches Zentrum für Luft- und Raumfahrt e. V., Institut für Verkehrssystemtechnik, Berichte aus dem DLR-Institut für Verkehrssystemtechnik, Braunschweig (2016)
Acknowledgment
We thank the colleges in the CST division of the Jülich Supercomputing Centre for discussions and help.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Chraibi, M., Steffen, B. (2018). The Automatic Generation of an Efficient Floor Field for CA Simulations in Crowd Management. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science(), vol 11115. Springer, Cham. https://doi.org/10.1007/978-3-319-99813-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-99813-8_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99812-1
Online ISBN: 978-3-319-99813-8
eBook Packages: Computer ScienceComputer Science (R0)