Skip to main content

The Automatic Generation of an Efficient Floor Field for CA Simulations in Crowd Management

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11115))

Included in the following conference series:

Abstract

The Hermes project [1] demonstrated the usefulness of on site predictive simulations of probable evacuation scenarios for security personnel. However, the hardware needed was prohibitively expensive [2]. For use in crowd management, the software has to run on available computers. The CA methods, which are fast enough, have well known problems with treating corners and turns. The present paper shows how a standard CA method can be modified to produce a realistic movement of people around bends and obstacles by changing the standard floor field. This can be done adaptively allowing for the momentary situation using simple predictions for the immediate future. The approach has one or two tuning parameter that have an obvious meaning and can therefore be set correctly by people not familiar with the inner process of a CA simulation. With this, a high end laptop can simulate more than 100 000 persons faster than real time, which should be enough for most occasions. It is intended to integrate the method into the tool JuPedSim [23].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Holl, S., Seyfried, A.: Hermes - an evacuation assistant for mass events. inSiDe 7, 60–61 (2009)

    Google Scholar 

  2. Kemloh, U., Steffen, B., Seyfried, A., Chraibi, M.: Parallel real time computation of large scale pedestrian evacuations. Adv. Eng. Softw. 60–61, 98–103 (2013)

    Article  Google Scholar 

  3. Lämmel, G., Steffen, B.: A fast simulation approach for urban areas. Transp. Res. Board 93, 84–98 (2014)

    Google Scholar 

  4. Dieckmann, D.: Die Feuersicherheit in Theatern. Jung, München (1911)

    MATH  Google Scholar 

  5. Fruin, J.J.: Pedestrian Planning and Design. Elevator World, New York (1971)

    Google Scholar 

  6. Predtetschenski, W.M., Milinski, A.I.: Personenströme in Gebäuden - Berechnungsmethoden für die Projektierung. Verlagsgesellschaft Rudolf Müller, Köln-Braunsfeld (1971)

    Google Scholar 

  7. Lämmel, G., Grether, D., Nagel, K.: The representation and implementation of time-dependent inundation in large-scale microscopic evacuation simulations. Transp. Res. C 18, 84–98 (2010)

    Article  Google Scholar 

  8. Lämmel, G., Steffen, B., Seyfried, A.: Large scale and microscopic: a fast simulation approach for urban areas Washington. Transportation Research Board Annual Meeting Online, 14–3890 (2014)

    Google Scholar 

  9. Lämmel, G., Chraibi, M., Kemloh Wagoum, A.U.: Hybrid multimodal and intermodal transport simulation: case study on large-scale evacuation planning. Transp. Res. Rec.: J. Transp. Res. Board 2561, 1–8 (2016)

    Article  Google Scholar 

  10. Chraibi, M., Steffen, B.: Multiscale simulation of pedestrians for efficient predictive modeling in large events. J. Cell. Autom. 11(4), 299–310 (2016)

    MathSciNet  Google Scholar 

  11. Blue, V.J., Adler, J.L.: Cellular automata microsimulation of bi-directional pedestrian flows. J. Transp. Res. B 1678, 135–141 (2000)

    Article  Google Scholar 

  12. Galea, E.R., Gwynne, S., Lawrence, P.J., Filippidis, L., Blackspields, D., Cooney, D.: buildingEXODUS V 4.0 - User Guide and Technical Manual (2004)

    Google Scholar 

  13. Klüpfel, H., et al.: Handbuch PedGo 2, PedGo Editor 2 (2005)

    Google Scholar 

  14. Zhang, J., Klinsch, W., Rupprecht, T., Schadschneider, A.: Empirical study of turning and merging of pedestrian streams in T-junction. In: Fourth International Symposium on Agent-Based Modeling and Simulation (ABModSim-4), Vienna, Austria (2012)

    Google Scholar 

  15. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Phys. A 312, 260–276 (2002)

    Article  Google Scholar 

  16. Steffen, B., Seyfried, A.: Modelling of pedestrian movement around 90\(^\circ \) and 180\(^\circ \) bends. In: Advanced Research Workshop “Fire Protection and Life Safety in Buildings and Transportation Systems", pp. 243–253 (2009)

    Google Scholar 

  17. Molnár, P.: Modellierung und Simulation der Dynamik von Fußgängerströmen. Shaker, Aachen (1996)

    Google Scholar 

  18. Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82, 046111 (2010)

    Article  Google Scholar 

  19. Rogsch, C., Klingsch, W., Seyfried, A., Weigel, H.: Prediction accuracy of evacuation times for high-rise buildings and simple geometries by using different software-tools. In: Appert-Rolland, C., Chevoir, F., Gondret, P., Lassarre, S., Lebacque, J.P., Schreckenberg, M. (eds.) Traffic and Granular Flow, pp. 395–400. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77074-9_42

    Chapter  Google Scholar 

  20. Seyfried, A., et al.: Enhanced empirical data for the fundamental diagram and the flow through bottlenecks. In: Klingsch, W., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics, pp. 145–156. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-04504-2_11

    Chapter  Google Scholar 

  21. Schadschneider, A., Eilhardt, C., Nowak, S., Will, R.: Towards a calibration of the floor field cellular automaton. In: Peacock, R., Kuligowski, E., Averill, J. (eds.) Pedestrian and Evacuation Dynamics, pp. 557–566. Springer, Heidelberg (2010). https://doi.org/10.1007/978-1-4419-9725-8_50. ein Artikel allgemein zu unseren Extraktionsmethoden ist

    Chapter  Google Scholar 

  22. Boltes, M., Seyfried, A.: Collecting pedestrian trajectories. Neurocomputing 100, 127–133 (2013). Special Issue on Behaviours in Video

    Article  Google Scholar 

  23. Chraibi, M., Zhang, J.: JuPedSim: an open framework for simulating and analyzing the dynamics of pedestrians SUMO2016 - Traffic, Mobility, and Logistics. In: Proceedings SUMO Conference 2016, SUMO2016, Berlin, Germany, 23–25 May 2016, vol. 30, pp. 127–134. Deutsches Zentrum für Luft- und Raumfahrt e. V., Institut für Verkehrssystemtechnik, Berichte aus dem DLR-Institut für Verkehrssystemtechnik, Braunschweig (2016)

    Google Scholar 

Download references

Acknowledgment

We thank the colleges in the CST division of the Jülich Supercomputing Centre for discussions and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohcine Chraibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chraibi, M., Steffen, B. (2018). The Automatic Generation of an Efficient Floor Field for CA Simulations in Crowd Management. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science(), vol 11115. Springer, Cham. https://doi.org/10.1007/978-3-319-99813-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99813-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99812-1

  • Online ISBN: 978-3-319-99813-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics