Abstract
We study the regional master-slave synchronization of a one dimensional probabilistic cellular automaton with two absorbing states. The master acts on the boundary of an interval, the region, of a fixed size. For some values of the parameters, this is enough to achieve synchronization in the region. For other values, we extend the regional synchronization to include a fraction of sites inside the region of interest. We present four different ways of doing this and show which is the most effective one, in terms of the fraction of sites inside the region and the time needed for synchronization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bandini, S., Chopard, B., Tomassini, M. (eds.): ACRI 2002. LNCS, vol. 2493. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45830-1
Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.): ACRI 2004. LNCS, vol. 3305. Springer, Heidelberg (2004). https://doi.org/10.1007/b102055
El Yacoubi, S., Chopard, B., Bandini, S. (eds.): ACRI 2006. LNCS, vol. 4173. Springer, Heidelberg (2006). https://doi.org/10.1007/11861201
Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.): ACRI 2008. LNCS, vol. 5191. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79992-4
Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.): ACRI 2010. LNCS, vol. 6350. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15979-4
Sirakoulis, G.C., Bandini, S. (eds.): ACRI 2012. LNCS, vol. 7495. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33350-7
Wąs, J., Sirakoulis, G.C., Bandini, S. (eds.): ACRI 2014. LNCS, vol. 8751. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11520-7
El Yacoubi, S., Wąs, J., Bandini, S. (eds.): ACRI 2016. LNCS, vol. 9863. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44365-2
Bagnoli, F., Rechtman, R., El Yacoubi, S.: Control of cellular automata. Phys. Rev. E 86, 066201 (2012). https://doi.org/10.1103/PhysRevE.86.066201
Bagnoli, F., El Yacoubi, S., Rechtman, R.: Toward a boundary regional control problem for Boolean cellular automata. Nat. Comput. (2017). https://doi.org/10.1007/s11047-017-9626-1
Bagnoli, F., Dridi, S., El Yacoubi, S., Rechtman, R.: Regional control of probabilistic cellular automata. In: Mauri, G., et al. (eds.) ACRI 2018. LNCS, vol. 11115, pp. 243–254. Springer, Heidelberg (2018)
Bagnoli, F., Rechtman, R.: Phase transitions of cellular automata. In: Louis, P.-Y., Nardi, F.R. (eds.) Probabilistic Cellular Automata. ECC, vol. 27, pp. 215–236. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65558-1_15
Bagnoli, F., Rechtman, R.: Synchronization and maximum Lyapunov exponent in cellular automata. Phys. Rev. E 59, R1307 (1999). https://doi.org/10.1103/PhysRevE.59.R1307
Bagnoli, F., El Yacoubi, S., Rechtman, R.: Control of cellular automata. In: Robert, A.M. (ed.) Encyclopedia of Complexity and Systems Science. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-642-27737-5_710-1
Bagnoli, F., Boccara, N., Rechtman, R.: Nature of phase transitions in a probabilistic cellular automaton with two absorbing states. Phys. Rev. E 63, 046116 (2001). https://doi.org/10.1103/PhysRevE.63.046116
Martins, M.L., Verona de Resende, H.F., Tsallis, C., Magalhães, A.C.N.: Evidence for a new phase in the Domany-Kinzel cellular automaton. Phys. Rev. Lett. 66, 20145 (1991). https://doi.org/10.1103/PhysRevLett.66.2045
Grassberger, P.: Are damage spreading transitions generically in the universality class of directed percolation? J. Stat. Phys. 79, 13 (1995). https://doi.org/10.1007/BF02179381
Acknowledgments
We thank S. El Yacoubi for useful comments. R.S. acknowledges partial financial support from PPA-DGAPA-UNAM.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Bagnoli, F., Rechtman, R. (2018). Regional Synchronization of a Probabilistic Cellular Automaton. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science(), vol 11115. Springer, Cham. https://doi.org/10.1007/978-3-319-99813-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-99813-8_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99812-1
Online ISBN: 978-3-319-99813-8
eBook Packages: Computer ScienceComputer Science (R0)