Skip to main content

PAM: Discrete 3-D Model of Tumor Dynamics in the Presence of Anti-tumor Treatment

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11115))

Included in the following conference series:

Abstract

Existing computer models of cancer focus mostly on disease progression rather than its remission/recurrence caused by anti-cancer therapy. Herein, we present a discrete model of tumor evolution in 3D, based on the Particle Automata Model (PAM) that allows for following the spatio-temporal dynamics of a small neoplasm (millimeters in diameter) under treatment. We confront the 3D model with its simplified 0D version. We demonstrate that the spatial factors such as the vascularization density, absent in the structureless 0D cancer models, can critically influence the results of treatment. We discuss briefly the role of computer simulations in personalized anti-cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society: Lifetime Risk of Developing or Dying From Cancer (2018). https://www.cancer.org/cancer/cancer-basics/lifetime-probability-of-developing-or-dying-from-cancer.html

  2. Bender, J., Koschier, D.: Divergence-free smoothed particle hydrodynamics. In: Proceedings of ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation (SCA) (2015)

    Google Scholar 

  3. Benzekry, S., Lamont, C., Beheshti, A., Tracz, A., Ebos, J.M.L., Hlatky, L.: Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput. Biol. 10(8), e1003800 (2014)

    Article  Google Scholar 

  4. Chabner, B.A., Longo, D.L.: Cancer Chemotherapy and Biotherapy: Principles and Practice. Lippincott Williams and Wilkins, Philadelphia (2011)

    Google Scholar 

  5. Csilléry, K., Blum, M.G., Gaggiotti, O.E., François, O.: Approximate Bayesian computation (ABC) in practice. Trends Ecol. Evol. 25(7), 410–418 (2010)

    Article  Google Scholar 

  6. Cristini, V., Lowengrub, J.: Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, p. 278. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  7. Dzwinel, W., Kłusek, A., Wcisło, R., Panuszewska, M., Topa, P.: Continuous and discrete models of melanoma progression simulated in multi-GPU environment. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.) PPAM 2017. LNCS, vol. 10777, pp. 505–518. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78024-5_44

    Chapter  Google Scholar 

  8. Dzwinel, W., Wcisło, R., Yuen, D.A., Miller, S.: PAM: particle automata in modeling of multi-scale biological systems. ACM Trans. Model. Comput. Simul. 26(3), 1–21 (2016). Article no. 20

    Article  Google Scholar 

  9. Dzwinel, W., Yuen, D.A.: Rayleigh-Taylor instability in the mesoscale modeled by dissipative particle dynamics. Int. J. Mod. Phys. C 12(1), 91–118 (2001)

    Article  Google Scholar 

  10. Gerlee, P., Anderson, A.R.A.: Diffusion-limited tumour growth: simulations and analysis. Math. Biosci. Eng. 7(2), 385–400 (2010)

    Article  MathSciNet  Google Scholar 

  11. Huang, D., et al.: Anti-angiogenesis or pro-angiogenesis for cancer treatment: focus on drug distribution. Int. J. Clin. Exp. Med. 8(6), 8369 (2015)

    Google Scholar 

  12. Iwasa, Y., Michor, F.: Evolutionary dynamics of intratumor heterogeneity. PLoS ONE 6(3), e17866 (2011)

    Article  Google Scholar 

  13. Jagiella, N., Rickert, D., Theis, F.J., Hasenauer, J.: Parallelization and high-performance computing enables automated statistical inference of multi-scale models. Cell Syst. 4(2), 194–206 (2017)

    Article  Google Scholar 

  14. Kaina, B.: DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem. Pharmacol. 66(8), 1547–1554 (2003)

    Article  Google Scholar 

  15. Kim, M., Gillies, R.J., Rejniak, K.A.: Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Front. Oncol. 3, 278 (2013)

    Google Scholar 

  16. Louzoun, Y., Xue, C., Lesinski, G.B., Friedman, A.: A mathematical model for pancreatic cancer growth and treatments. J. Theor. Biol. 351, 74–82 (2014)

    Article  MathSciNet  Google Scholar 

  17. Łazarz, R.: Graph-based framework for 3-D vascular dynamics simulation. Procedia Comput. Sci. 101, 415–423 (2016)

    Article  Google Scholar 

  18. Masunaga, S.I., Ono, K., Hori, H., Suzuki, M., Kinashi, Y., Takagaki, M.: Potentially lethal damage repair by total and quiescent tumor cells following various DNA-damaging treatments. Radiat. Med. 17(4), 259–264 (1999)

    Google Scholar 

  19. Ribba, B., Holford, N.H., Magni, P.: A review of mixed-effects models of tumor growth and effects of anticancer drug treatment used in population analysis. CPT Pharmacomet. Syst. Pharmacol. 3, e113 (2014)

    Article  Google Scholar 

  20. Ribba, B., Holford, N.H., Magni, P., Trocóniz, I., Gueorguieva, I., Girard, P.: A review of mixed-effects models of tumor growth and effects of anticancer drug treatment used in population analysis. CPT: Pharmacomet. Syst. Pharmacol. 3(5), 1–10 (2014)

    Google Scholar 

  21. Ribba, B., et al.: A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy. Clin. Cancer Res. 18(18), 5071–5080 (2012)

    Article  Google Scholar 

  22. Rieger, H., Fredrich, T., Welter, M.: Eur. Phys. J. 131, 31 (2016)

    Google Scholar 

  23. Wcisło, R., Dzwinel, W., Yuen, D.A., Dudek, A.Z.: A 3-D model of tumor progression based on complex automata driven by particle dynamics. J. Mol. Model. 15(12), 1517 (2009)

    Article  Google Scholar 

  24. Wodarz, D., Komarova, N.L.: Dynamics of Cancer: Mathematical Foundations of Oncology, p. 532. World Scientific, Singapore (2014)

    Book  Google Scholar 

  25. Xie, H., Jiao, Y., Fan, Q., Hai, M., Yang, J., Hu, Z., et al.: Modeling Three-dimensional Invasive Solid Tumor Growth in Heterogeneous Microenvironment under Chemotherapy (2018). arXiv preprint arXiv:1803.02953

Download references

Acknowledgments

The work has been supported by the Polish National Science Center (NCN), in the scope of two projects: 2013/10/M/ST6/00531 (RW and BM) and 2016/21/B /ST6/01539 (MP and WD). We thank Piotr Pedrycz, (MSc student), for providing us with the results of parameters adaptation for 0-D tumor model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Panuszewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panuszewska, M., Minch, B., Wcisło, R., Dzwinel, W. (2018). PAM: Discrete 3-D Model of Tumor Dynamics in the Presence of Anti-tumor Treatment. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science(), vol 11115. Springer, Cham. https://doi.org/10.1007/978-3-319-99813-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99813-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99812-1

  • Online ISBN: 978-3-319-99813-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics