Skip to main content

Associative Unification and Symbolic Reasoning Modulo Associativity in Maude

  • Conference paper
  • First Online:
Rewriting Logic and Its Applications (WRLA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11152))

Included in the following conference series:

Abstract

We have added support for associative unification to Maude 2.7.1. Associative unification is infinitary, i.e., there are unification problems \(u =^? v\) such that there is an infinite minimal set of unifiers, whereas associative-commutative unification is finitary. A unique feature of the associative unification algorithm implemented in Maude is that it is guaranteed to terminate with a finite and complete set of associative unifiers for a fairly large class of unification problems occurring in practice. For any problems outside this class, the algorithm returns a finite set of unifiers together with a warning that such set may be incomplete. This paper describes this associative unification algorithm implemented in Maude and also how other symbolic reasoning Maude features such as (i) variant generation; (ii) variant unification; and (iii) narrowing based symbolic reachability analysis have been extended to deal with associativity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Maude is publicly available at http://maude.cs.illinois.edu.

References

  1. Abdulrab, H.: Implementation of Makanin’s algorithm. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 61–84. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55124-7_3

    Chapter  Google Scholar 

  2. Abdulrab, H.: LOP: toward a new implementation of Makanin’s algorithm. In: Abdulrab, H., Pécuchet, J.-P. (eds.) IWWERT 1991. LNCS, vol. 677, pp. 133–149. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56730-5_35

    Chapter  Google Scholar 

  3. Abdulrab, H., Pécuchet, J.-P.: Solving word equations. J. Symbolic Comput. 8(5), 499–521 (1989)

    Article  MathSciNet  Google Scholar 

  4. Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: Partial evaluation of order-sorted equational programs modulo axioms. In: Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 3–20. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4_1

    Chapter  Google Scholar 

  5. Auffray, Y., Enjalbert, P.: Modal theorem proving: an equational viewpoint. J. Logic Comput. 2(3), 247–295 (1992)

    Article  MathSciNet  Google Scholar 

  6. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-state systems using narrowing. In: van Raamsdonk, F. (ed.) 24th International Conference on Rewriting Techniques and Applications, RTA 2013, 24–26 June 2013, Eindhoven, The Netherlands, vol. 21. LIPIcs, pp. 81–96. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

  7. Caballero, R., López-Fraguas, F.J.: A functional-logic perspective of parsing. In: Middeldorp, A., Sato, T. (eds.) FLOPS 1999. LNCS, vol. 1722, pp. 85–99. Springer, Heidelberg (1999). https://doi.org/10.1007/10705424_6

    Chapter  MATH  Google Scholar 

  8. Clavel, M., et al.: Maude Manual (Version 2.7.1) (2016). http://maude.cs.illinois.edu

  9. Clavel, M., et al.: Unification and narrowing in Maude 2.4. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 380–390. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02348-4_27

    Chapter  Google Scholar 

  10. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

    Book  MATH  Google Scholar 

  11. Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3_22

    Chapter  Google Scholar 

  12. Dreier, J., Duménil, C., Kremer, S., Sasse, R.: Beyond subterm-convergent equational theories in automated verification of stateful protocols. In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 117–140. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6_6

    Chapter  Google Scholar 

  13. Durán, F., Eker, S., Escobar, S., Martí-Oliet, N., Meseguer, J., Talcott, C.: Built-in variant generation and unification, and their applications in Maude 2.7. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 183–192. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1_13

    Chapter  Google Scholar 

  14. Durán, F., Eker, S., Escobar, S., Meseguer, J., Talcott, C.L.: Variants, unification, narrowing, and symbolic reachability in Maude 2.6. In: Schmidt-Schauß, M. (ed.) Proceedings of the 22nd International Conference on Rewriting Techniques and Applications, RTA 2011, 30 May–1 June 2011, Novi Sad, Serbia, vol. 10. LIPIcs, pp. 31–40. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

    Google Scholar 

  15. Durán, F., Lucas, S., Meseguer, J.: Termination modulo combinations of equational theories. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 246–262. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04222-5_15

    Chapter  MATH  Google Scholar 

  16. Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories. J. Logic Algebraic Program. 81(7–8), 816–850 (2012)

    Article  MathSciNet  Google Scholar 

  17. Enjalbcrt, P., Clerin-Debart, F.Ç.: A case of termination for associative unification. In: Abdulrab, H., Pécuchet, J.-P. (eds.) IWWERT 1991. LNCS, vol. 677, pp. 79–89. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56730-5_32

    Chapter  Google Scholar 

  18. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03829-7_1

    Chapter  MATH  Google Scholar 

  19. Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73449-9_13

    Chapter  Google Scholar 

  20. Escobar, S., Meseguer, J., Meadows, C.: Maude-NPA manual v3.1 (2017). http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:_Maude-NPA

  21. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. J. Logic Algebraic Program. 81(7–8), 898–928 (2012)

    Article  MathSciNet  Google Scholar 

  22. Goguen, J., Meseguer, J.: EQLOG: equality, types and generic modules for logic programming. In: DeGroot, D., Lindstrom, G. (eds.) Logic Programming, Functions, Relations and Equations, pp. 295–363. Prentice-Hall (1986)

    Google Scholar 

  23. Gutiérrez, C.: Satisfiability of word equations with constants is in exponential space. In: Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1998), pp. 112–119. IEEE Computer Society Press (1998)

    Google Scholar 

  24. Gutiérrez, C.: Solving equations in strings: on Makanin’s algorithm. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 358–373. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054336

    Chapter  Google Scholar 

  25. Hmelevskii, J.I.: Equations in free semigroups. Number 107 in Proceedings of the Steklov Institute of Mathematics, Moscow (1971)

    Google Scholar 

  26. Jaffa, J.: Minimal and complete word unification. J. ACM 37(1), 47–85 (1990)

    Article  MathSciNet  Google Scholar 

  27. Lothaire, M.: Algebraic Combinatorics on Words. Number 90 in Encyclopedia of Mathematics and its Applications. Cambridge University Press (2002)

    Google Scholar 

  28. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Matematicheskii USSR Sbornik 32(2), 129–198 (1977)

    Article  MathSciNet  Google Scholar 

  29. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_48

    Chapter  Google Scholar 

  30. Meseguer, J.: Multiparadigm logic programming. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS, vol. 632, pp. 158–200. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0013826

    Chapter  Google Scholar 

  31. Meseguer, J.: Variant-based satisfiability in initial algebras. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 3–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29510-7_1

    Chapter  Google Scholar 

  32. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols. Higher-Order Symbolic Comput. 20(1–2), 123–160 (2007)

    Article  Google Scholar 

  33. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J. ACM 51(3), 483–496 (2004)

    Article  MathSciNet  Google Scholar 

  34. Plandowski, W.: An efficient algorithm for solving word equations. In: Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing (STOC 2006), pp. 467–476. ACM, New York (2007)

    Google Scholar 

  35. Plotkin, G.D.: Building in equational theories. Mach. Intell. 7, 73–90 (1972)

    MATH  Google Scholar 

  36. Riesco, A.: Using big-step and small-step semantics in maude to perform declarative debugging. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 52–68. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07151-0_4

    Chapter  MATH  Google Scholar 

  37. Rusu, V.: Combining theorem proving and narrowing for rewriting-logic specifications. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp. 135–150. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13977-2_12

    Chapter  Google Scholar 

  38. Schmidt, R.A.: E-unification for subsystems of S4. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 106–120. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0052364

    Chapter  Google Scholar 

  39. Schulz, K.U.: Makanin’s algorithm for word equations-two improvements and a generalization. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 85–150. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55124-7_4

    Chapter  Google Scholar 

  40. Schulz, K.U.: Word unification and transformation of generalized equations. J. Autom. Reasoning 11(2), 149–184 (1993)

    Article  MathSciNet  Google Scholar 

  41. Tushkanova, E., Giorgetti, A., Ringeissen, C., Kouchnarenko, O.: A rule-based system for automatic decidability and combinability. Sci. Comput. Program. 99, 3–23 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Francisco Durán has been partially supported by Spanish MINECO/FEDER project TIN2014-52034-R and Univ. Málaga, Campus de Excelencia Internacional Andalucía Tech. Steven Eker was partially supported by NRL grant N00173-16-C-2005. Santiago Escobar was partially supported by the EU (FEDER) and the Spanish MINECO under grant TIN2015-69175-C4-1-R, by the Spanish Generalitat Valenciana under grant PROMETEOII/2015/013, and by the US Air Force Office of Scientific Research under award number FA9550-17-1-0286. Narciso Martí-Oliet has been partially supported by MINECO Spanish project TRACES (TIN2015–67522–C3–3R) and by Comunidad de Madrid program N-GREENS Software (S2013/ICE-2731). Jose Meseguer was partially supported by NRL under contract number N00173-17-1-G002. Carolyn Talcott was partially supported by ONR grants N0001415-1-2202, N00173-17-1-G002 and NRL grant N00173-16-C-2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Escobar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Durán, F., Eker, S., Escobar, S., Martí-Oliet, N., Meseguer, J., Talcott, C. (2018). Associative Unification and Symbolic Reasoning Modulo Associativity in Maude. In: Rusu, V. (eds) Rewriting Logic and Its Applications. WRLA 2018. Lecture Notes in Computer Science(), vol 11152. Springer, Cham. https://doi.org/10.1007/978-3-319-99840-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99840-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99839-8

  • Online ISBN: 978-3-319-99840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics