Abstract
Service robots sometimes behave in unexpected ways and may put economic interests or human safety in risk. This can be accepted in research environments, but it is not going to be tolerated in everyday use of robots. In addition, regulations for the deployment of autonomous robots (from home assistants to autonomous cars) are increasing. These regulations will require at some point systems that could be audited and that implement facilities for forensic analysis. In this paper, we propose that these systems have to be integrated in the development frameworks of robotics software as a mandatory component. We present two design alternatives for the de facto standard for service robotics (ROS: Robotic Operating System) to enforce safety and security rules based on a customizable black-box-like component.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wachter, S., Mittelstadt, B., Floridi, L.: Transparent, explainable, and accountable AI for robotics. Sic. Rob. 2(6) (2017). https://doi.org/10.1126/scirobotics.aan6080
Delvaux, M.: Report with recommendations to the Commission on Civil Law Rules on Robotics (2015/2103(INL)), January 2017
Nevejans, N.: Study: European Civil Law Rules in Robotics. European Parliament PE 571.379 (2017)
Dennis, L.A., Fisher, M., Winfield, A.F.T.: Towards verifiably ethical robot behavior. In: AAAI 2015, Artificial Intelligence and Ethics (2015)
Winfield, A.F., Blum, C., Liu, W.: Towards and ethical robot: internal models, consequences and ethical action selection. In: Mistry, M., Leonardis, A.,Witkowski, M., Melhuish, C. (eds.) Advances in Autonomous Robotics Systems, volume 8717 of Lecture Notes in Computer Science, pp. 85–96. Springer (2014)
Wachter, S., Mittelstadt, B., Floridi, L.: Why a right to explanation of automated decision-making does not exist in the general data protection regulation, 28 December 2016. International Data Privacy Law (2017). https://doi.org/10.2139/ssrn.2903469
Arkin, R.C.: Governing lethal behavior: embedding ethics in a hybrid deliberative/reactive robot architecture. Technical report GIT-GVU-07-11. Georgia Tech University (2007)
Arkin, R.C.: Governing Lethal Behavior in Autonomous Robots. CRC Press (2009)
Arkin, R.C.: Motor schema - baed mobile rsobot navigation. Int. J. Robot. Res. 8(4), 92–112 (1989)
Benjamin, D.P., Lyons, D., Lonsdale, D.: ADAPT: a cognitive architecture for robotics. In: International Conference on Cognitive Modeling (2004)
Rodríguez-Lera, F.J., Matellán-Olivera, V., Balsa-Comerón, J., Guerrero-Higueras, A.M., Fernández-Llamas, C.: Message encryption in robot operating system: collateral effects of hardening mobile robots. Frontiers in ICT. Computer and Network Security (2018). https://doi.org/10.3389/fict.2018.00002
Balsa-Comerón, J., Guerrero-Higueras, Á.M., Rodríguez-Lera, F.J., Fernández-Llamas, C., Matellán-Olivera, V.: Cybersecurity in autonomous systems: hardening ROS using encrypted communications and semantic rules. In: Iberian Robotics Conference, pp. 67–78. Springer, Cham, November 2017
Rodríguez Lera, F.J., Matellán-Olivera, V., Conde, M.A., Martín Rico, F.: HiMoP: a three components architecture to create more human-acceptable assistive robots. Cogn. Process. https://doi.org/10.1007/s10339-017-0850-5
Huang, J., Erdogan, C., Zhang, Y., Moore, B., Luo, Q., Sundaresan, A., Rosu, G.: ROSRV: runtime verification for robots. In: International Conference on Runtime Verification, pp. 247–254. Springer, Cham, September 2014
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R, Ng, A. Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, No. 3.2, p. 5, May 2009
Koubaa, A. (ed.) Robot Operating System (ROS): The Complete Reference, vol. 1. Springer (2016)
Hull, C.L., Hovland, C.I., Ross, R.T., Hall, M., Perkins, D.T., Fitch, F.B.: Mathematico-deductive theory of rote learning: a study in scientific methodology (1940)
Vinokurov, J., Lebiere, C., Wyatte, D., Herd, S., O’Reilly, R.: Unsurpervised learning in hybrid cognitive architectures. In: Proceedings of the 2012 AAAI Workshop on Neural-Symbolic Integration (2012)
Laird, J.E.: The Soar Cognitive Architecture. MIT Press, Cambridge (2012)
Thomas, D., Fernandez, E., Woodall, W.: State of ROS 2–demos and the technology behind. Presentation at ROSCon 2015, Hamburg, Germany, October 2015 (2016). https://roscon.ros.org/2015/presentations/state-of-ros2.pdf
Halder, R., Proença, J., Macedo, N., Santos, A.: Formal verification of ROS-based robotic applications using timed-automata. In: IEEE/ACM 5th International FME Workshop on Formal Methods in Software Engineering (FormaliSE), Buenos Aires, pp. 44–50 (2017). https://doi.org/10.1109/FormaliSE.2017.9
Acknowledgements
This work has been partially funded by Junta de Castilla y León grant LE-028P17, Comunidad de Madrid grant RoboCity2030-Fase 3 - S2013/MIT-2748, and by Ministerio de Economía and Competitividad of the Kingdom of Spain under RETOGAR project (TIN2016-76515-R).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Guerrero-Higueras, Á.M., Rodríguez-Lera, F.J., Martín-Rico, F., Balsa-Comerón, J., Matellán-Olivera, V. (2019). Accountability in Mobile Service Robots. In: Fuentetaja Pizán, R., García Olaya, Á., Sesmero Lorente, M., Iglesias Martínez, J., Ledezma Espino, A. (eds) Advances in Physical Agents. WAF 2018. Advances in Intelligent Systems and Computing, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-99885-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-99885-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99884-8
Online ISBN: 978-3-319-99885-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)