Skip to main content

Accountability in Mobile Service Robots

  • Conference paper
  • First Online:
Advances in Physical Agents (WAF 2018)

Abstract

Service robots sometimes behave in unexpected ways and may put economic interests or human safety in risk. This can be accepted in research environments, but it is not going to be tolerated in everyday use of robots. In addition, regulations for the deployment of autonomous robots (from home assistants to autonomous cars) are increasing. These regulations will require at some point systems that could be audited and that implement facilities for forensic analysis. In this paper, we propose that these systems have to be integrated in the development frameworks of robotics software as a mandatory component. We present two design alternatives for the de facto standard for service robotics (ROS: Robotic Operating System) to enforce safety and security rules based on a customizable black-box-like component.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wachter, S., Mittelstadt, B., Floridi, L.: Transparent, explainable, and accountable AI for robotics. Sic. Rob. 2(6) (2017). https://doi.org/10.1126/scirobotics.aan6080

    Article  Google Scholar 

  2. Delvaux, M.: Report with recommendations to the Commission on Civil Law Rules on Robotics (2015/2103(INL)), January 2017

    Google Scholar 

  3. Nevejans, N.: Study: European Civil Law Rules in Robotics. European Parliament PE 571.379 (2017)

    Google Scholar 

  4. Dennis, L.A., Fisher, M., Winfield, A.F.T.: Towards verifiably ethical robot behavior. In: AAAI 2015, Artificial Intelligence and Ethics (2015)

    Google Scholar 

  5. Winfield, A.F., Blum, C., Liu, W.: Towards and ethical robot: internal models, consequences and ethical action selection. In: Mistry, M., Leonardis, A.,Witkowski, M., Melhuish, C. (eds.) Advances in Autonomous Robotics Systems, volume 8717 of Lecture Notes in Computer Science, pp. 85–96. Springer (2014)

    Google Scholar 

  6. Wachter, S., Mittelstadt, B., Floridi, L.: Why a right to explanation of automated decision-making does not exist in the general data protection regulation, 28 December 2016. International Data Privacy Law (2017). https://doi.org/10.2139/ssrn.2903469

  7. Arkin, R.C.: Governing lethal behavior: embedding ethics in a hybrid deliberative/reactive robot architecture. Technical report GIT-GVU-07-11. Georgia Tech University (2007)

    Google Scholar 

  8. Arkin, R.C.: Governing Lethal Behavior in Autonomous Robots. CRC Press (2009)

    Google Scholar 

  9. Arkin, R.C.: Motor schema - baed mobile rsobot navigation. Int. J. Robot. Res. 8(4), 92–112 (1989)

    Article  MathSciNet  Google Scholar 

  10. Benjamin, D.P., Lyons, D., Lonsdale, D.: ADAPT: a cognitive architecture for robotics. In: International Conference on Cognitive Modeling (2004)

    Google Scholar 

  11. Rodríguez-Lera, F.J., Matellán-Olivera, V., Balsa-Comerón, J., Guerrero-Higueras, A.M., Fernández-Llamas, C.: Message encryption in robot operating system: collateral effects of hardening mobile robots. Frontiers in ICT. Computer and Network Security (2018). https://doi.org/10.3389/fict.2018.00002

  12. Balsa-Comerón, J., Guerrero-Higueras, Á.M., Rodríguez-Lera, F.J., Fernández-Llamas, C., Matellán-Olivera, V.: Cybersecurity in autonomous systems: hardening ROS using encrypted communications and semantic rules. In: Iberian Robotics Conference, pp. 67–78. Springer, Cham, November 2017

    Google Scholar 

  13. Rodríguez Lera, F.J., Matellán-Olivera, V., Conde, M.A., Martín Rico, F.: HiMoP: a three components architecture to create more human-acceptable assistive robots. Cogn. Process. https://doi.org/10.1007/s10339-017-0850-5

    Article  Google Scholar 

  14. Huang, J., Erdogan, C., Zhang, Y., Moore, B., Luo, Q., Sundaresan, A., Rosu, G.: ROSRV: runtime verification for robots. In: International Conference on Runtime Verification, pp. 247–254. Springer, Cham, September 2014

    Google Scholar 

  15. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R, Ng, A. Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, No. 3.2, p. 5, May 2009

    Google Scholar 

  16. Koubaa, A. (ed.) Robot Operating System (ROS): The Complete Reference, vol. 1. Springer (2016)

    Google Scholar 

  17. Hull, C.L., Hovland, C.I., Ross, R.T., Hall, M., Perkins, D.T., Fitch, F.B.: Mathematico-deductive theory of rote learning: a study in scientific methodology (1940)

    Google Scholar 

  18. Vinokurov, J., Lebiere, C., Wyatte, D., Herd, S., O’Reilly, R.: Unsurpervised learning in hybrid cognitive architectures. In: Proceedings of the 2012 AAAI Workshop on Neural-Symbolic Integration (2012)

    Google Scholar 

  19. Laird, J.E.: The Soar Cognitive Architecture. MIT Press, Cambridge (2012)

    Google Scholar 

  20. Thomas, D., Fernandez, E., Woodall, W.: State of ROS 2–demos and the technology behind. Presentation at ROSCon 2015, Hamburg, Germany, October 2015 (2016). https://roscon.ros.org/2015/presentations/state-of-ros2.pdf

  21. Halder, R., Proença, J., Macedo, N., Santos, A.: Formal verification of ROS-based robotic applications using timed-automata. In: IEEE/ACM 5th International FME Workshop on Formal Methods in Software Engineering (FormaliSE), Buenos Aires, pp. 44–50 (2017). https://doi.org/10.1109/FormaliSE.2017.9

Download references

Acknowledgements

This work has been partially funded by Junta de Castilla y León grant LE-028P17, Comunidad de Madrid grant RoboCity2030-Fase 3 - S2013/MIT-2748, and by Ministerio de Economía and Competitividad of the Kingdom of Spain under RETOGAR project (TIN2016-76515-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Manuel Guerrero-Higueras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guerrero-Higueras, Á.M., Rodríguez-Lera, F.J., Martín-Rico, F., Balsa-Comerón, J., Matellán-Olivera, V. (2019). Accountability in Mobile Service Robots. In: Fuentetaja Pizán, R., García Olaya, Á., Sesmero Lorente, M., Iglesias Martínez, J., Ledezma Espino, A. (eds) Advances in Physical Agents. WAF 2018. Advances in Intelligent Systems and Computing, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-99885-5_17

Download citation

Publish with us

Policies and ethics