Abstract
Theory exploration is a technique for automating the discovery of lemmas in formalizations of mathematical theories, using testing and automated proof techniques. Automated theory exploration has previously been successfully applied to discover lemmas for inductive theories, about recursive datatypes and functions. We present an extension of theory exploration to coinductive theories, allowing us to explore the dual notions of corecursive datatypes and functions. This required development of new methods for testing infinite values, and for proof automation. Our work has been implemented in the Hipster system, a theory exploration tool for the proof assistant Isabelle/HOL.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abel, A., Pientka, B.: Well-founded recursion with copatterns and sized types. J. Funct. Program. 26, e2 (2016)
Bird, R.: Introduction to Functional Programming, 2nd edn. Pearson Education, London (1998)
Bird, R., Wadler, P.: An Introduction to Functional Programming. Prentice Hall International (UK) Ltd., Hertfordshire (1988)
Blanchette, J.C., Bouzy, A., Lochbihler, A., Popescu, A., Traytel, D.: Friends with benefits. In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 111–140. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54434-1_5
Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly modular (Co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08970-6_7
Blanchette, J.C., Meier, F., Popescu, A., Traytel, D.: Foundational nonuniform (co)datatypes for higher-order logic. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–12, June 2017
Buchberger, B.: Theory exploration with Theorema. Analele Universitatii Din Timisoara, ser. Matematica-Informatica 38(2), 9–32 (2000)
Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of Haskell programs. In: Proceedings of ICFP, pp. 268–279 (2000)
Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 392–406. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_27
Fu, P., Komendantskaya, E., Schrijvers, T., Pond, A.: Proof relevant corecursive resolution. In: Kiselyov, O., King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 126–143. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29604-3_9
Hinze, R.: Concrete stream calculus: an extended study. J. Funct. Program. 20(5–6), 463–535 (2010)
Hutton, G., Gibbons, J.: The generic approximation lemma. Inf. Proces. Lett. 79, 2001 (2001)
Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. EATCS Bull. 62, 222–259 (1997)
Johansson, M.: Automated theory exploration for interactive theorem proving. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS, vol. 10499, pp. 1–11. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66107-0_1
Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories. J. Autom. Reason. 47(3), 251–289 (2011)
Johansson, M., Rosén, D., Smallbone, N., Claessen, K.: Hipster: integrating theory exploration in a proof assistant. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 108–122. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3_9
Leino, R., Moskal, M.: Co-induction simply: automatic co-inductive proofs in a program verifier. Technical report, Microsoft Research, July 2013
Lochbihler, A.: Coinductive. Archive of Formal Proofs, February 2010. http://isa-afp.org/entries/Coinductive.html. Formal proof development
Lucanu, D., Goriac, E.-I., Caltais, G., Roşu, G.: CIRC: a behavioral verification tool based on circular coinduction. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 433–442. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03741-2_30
McCasland, R.L., Bundy, A., Smith, P.F.: MATHsAiD: automated mathematical theory exploration. Appl. Intell. 47, 585–606 (2017)
Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle River (1989)
Montano-Rivas, O., McCasland, R., Dixon, L., Bundy, A.: Scheme-based theorem discovery and concept invention. Expert Syst. Appl. 39(2), 1637–1646 (2012)
Nakata, K., Uustalu, T.: A Hoare logic for the coinductive trace-based big-step semantics of while. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 488–506. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6_26
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9. http://isabelle.in.tum.de/dist/Isabelle2017/doc/tutorial.pdf
Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Proceedings of IWIL-2010 (2010)
Pous, D.: Coinduction all the way up. In: Proceedings of LICS, pp. 307–316. ACM, New York (2016)
Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge University Press, New York (2011)
Smallbone, N., Johansson, M., Claessen, K., Algehed, M.: Quick specifications for the busy programmer. J. Funct. Program. 27, e18 (2017)
Turner, D.A.: Total functional programming. J. UCS 10(7), 751–768 (2004)
Acknowledgements
The authors would like to thank Nicholas Smallbone for technical assistance with QuickSpec. The first author was partially supported by the GRACeFUL project, grant agreement No. 640954, which has received funding from the European Union’s Horizon 2020 research and innovation program.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Einarsdóttir, S.H., Johansson, M., Åman Pohjola, J. (2018). Into the Infinite - Theory Exploration for Coinduction. In: Fleuriot, J., Wang, D., Calmet, J. (eds) Artificial Intelligence and Symbolic Computation. AISC 2018. Lecture Notes in Computer Science(), vol 11110. Springer, Cham. https://doi.org/10.1007/978-3-319-99957-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-99957-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99956-2
Online ISBN: 978-3-319-99957-9
eBook Packages: Computer ScienceComputer Science (R0)