Skip to main content

TabbyPDF: Web-Based System for PDF Table Extraction

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2018)

Abstract

PDF is one of the most widespread ways to represent non-editable documents. Many of PDF documents are machine-readable but remain untagged. They have no tags for identifying layout items such as paragraphs, columns, or tables. One of the important challenges with these documents is how to extract tabular data from them. The paper presents a novel web-based system for extracting tables located in untagged PDF documents with a complex layout, for recovering their cell structures, and for exporting them into a tagged form (e.g. in CSV or HTML format). The system uses a heuristic-based approach to table detection and structure recognition. It mainly relies on recovering a human reading order of text, including document paragraphs and table cells. A prototype of the system was evaluated, using the methodology and dataset of “ICDAR 2013 Table Competition”. The standard metric F-score is 93.64% for the structure recognition phase and 83.18% for the table extraction with automatic table detection. The results are comparable with the state-of-the-art academic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.pdfa.org/pdf-in-2016-broader-deeper-richer.

  2. 2.

    http://pdftohtml.sourceforge.net.

  3. 3.

    http://tabula.technology.

  4. 4.

    https://semantic-ui.com.

  5. 5.

    https://mozilla.github.io/pdf.js.

  6. 6.

    https://spring.io.

  7. 7.

    http://tomcat.apache.org.

  8. 8.

    https://db.apache.org/derby.

  9. 9.

    TabbyPDF core: https://github.com/cellsrg/tabbypdf.

    TabbyPDF client: https://github.com/cellsrg/tabbypdf-front.

    TabbyPDF server: https://github.com/cellsrg/tabbypdf-web.

  10. 10.

    http://cells.icc.ru/pdfte.

  11. 11.

    http://www.tamirhassan.com/dataset.html.

  12. 12.

    http://tamirhassan.com/competition/dataset-tools.html.

  13. 13.

    https://sourceforge.net/projects/itext.

References

  1. Burdick, D., et al.: Financial analytics from public data. In: Proceedings of the International Workshop on Data Science for Macro-Modeling, DSMM 2014, pp. 4:1–4:6 (2014). https://doi.org/10.1145/2630729.2630742

  2. Corrêa, A.S., Zander, P.O.: Unleashing tabular content to open data: a survey on PDF table extraction methods and tools. In: Proceedings of 18th International Conference on Digital Government Research, pp. 54–63 (2017). https://doi.org/10.1145/3085228.3085278

  3. Coüasnon, B., Lemaitre, A.: Recognition of tables and forms. In: Handbook of Document Image Processing and Recognition, pp. 647–677 (2014). https://doi.org/10.1007/978-0-85729-859-1_20

    Chapter  Google Scholar 

  4. Göbel, M., Hassan, T., Oro, E., Orsi, G.: ICDAR 2013 table competition. In: Proceedings of 12th International Conference on Document Analysis and Recognition, pp. 1449–1453 (2013)

    Google Scholar 

  5. Göbel, M., Hassan, T., Oro, E., Orsi, G.: A methodology for evaluating algorithms for table understanding in PDF documents. In: Proceedings of 2012 ACM Symposium on Document Engineering, pp. 45–48 (2012). https://doi.org/10.1145/2361354.2361365

  6. Göbel, M., Hassan, T., Oro, E., Orsi, G., Rastan, R.: Table modelling, extraction and processing. In: Proceedings of 2016 ACM Symposium on Document Engineering, pp. 1–2 (2016). https://doi.org/10.1145/2960811.2967173

  7. Govindaraju, V., Zhang, C., Ré, C.: Understanding tables in context using standard NLP toolkits. In: Proceedings of 51st Annual Meeting of the Association for Computational Linguistics, pp. 658–664 (2013)

    Google Scholar 

  8. Hassan, T., Baumgartner, R.: Table recognition and understanding from PDF files. In: Proceedings of 9th International Conference on Document Analysis and Recognition, vol. 02, pp. 1143–1147 (2007). http://dl.acm.org/citation.cfm?id=1304596.1304833

  9. Hu, J., Liu, Y.: Analysis of documents born digital. In: Doermann, D., Tombre, K. (eds.) Handbook of Document Image Processing and Recognition, pp. 775–804. Springer, London (2014). https://doi.org/10.1007/978-0-85729-859-1_26

    Chapter  Google Scholar 

  10. Khusro, S., Latif, A., Ullah, I.: On methods and tools of table detection, extraction and annotation in PDF documents. J. Inf. Sci. 41(1), 41–57 (2015). https://doi.org/10.1177/0165551514551903

    Article  Google Scholar 

  11. Liu, Y., Bai, K., Mitra, P., Giles, C.L.: TableSeer: automatic table metadata extraction and searching in digital libraries. In: Proceedings of 7th ACM/IEEE Joint Conference on Digital Libraries, pp. 91–100 (2007). https://doi.org/10.1145/1255175.1255193

  12. Nganji, J.T.: The portable document format (PDF) accessibility practice of four journal publishers. Libr. Inf. Sci. Res. 37, 254–262 (2015). http://www.sciencedirect.com/science/article/pii/S0740818815000134

    Article  Google Scholar 

  13. Nurminen, A.: Algorithmic extraction of data in tables in PDF documents. Master’s thesis, Tampere University of Technology, Tampere, Finland (2013)

    Google Scholar 

  14. Oro, E., Ruffolo, M.: PDF-TREX: an approach for recognizing and extracting tables from PDF documents. In: Proceedings of 10th International Conference on Document Analysis and Recognition, pp. 906–910 (2009)

    Google Scholar 

  15. Perez-Arriaga, M.O., Estrada, T., Abad-Mota, S.: TAO: system for table detection and extraction from PDF documents. In: Proceedings of 29th International Florida Artificial Intelligence Research Society Conference, pp. 591–596 (2016)

    Google Scholar 

  16. Ramel, J.Y., Crucianu, M., Vincent, N., Faure, C.: Detection, extraction and representation of tables. In: Proceedings of 7th International Conference on Document Analysis and Recognition, vol. 1, pp. 374–378 (2003)

    Google Scholar 

  17. Rastan, R., Paik, H.Y., Shepherd, J.: TEXUS: a task-based approach for table extraction and understanding. In: Proceedings of 2015 ACM Symposium on Document Engineering, pp. 25–34 (2015). https://doi.org/10.1145/2682571.2797069

  18. Rastan, R., Paik, H.Y., Shepherd, J.: A PDF wrapper for table processing. In: Proceedings of 2016 ACM Symposium on Document Engineering, pp. 115–118 (2016). https://doi.org/10.1145/2960811.2967162

  19. Sabol, V., Tschinkel, G., Veas, E., Hoefler, P., Mutlu, B., Granitzer, M.: Discovery and visual analysis of linked data for humans. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 309–324. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_20

    Chapter  Google Scholar 

  20. Shigarov, A., Bychkov, I., Ruzhnikov, G., Khmel’nov, A.: A method of table detection in metafiles. Pattern Recognit. Image Anal. 19(4), 693–697 (2009). https://doi.org/10.1134/S1054661809040191

    Article  MATH  Google Scholar 

  21. Shigarov, A.: Table understanding using a rule engine. Expert. Syst. Appl. 42(2), 929–937 (2015)

    Article  Google Scholar 

  22. Shigarov, A., Fedorov, R.: Simple algorithm page layout analysis. Pattern Recognit. Image Anal. 21(2), 324–327 (2011). https://doi.org/10.1134/S1054661811021008

    Article  Google Scholar 

  23. Shigarov, A., Mikhailov, A., Altaev, A.: Configurable table structure recognition in untagged PDF documents. In: Proceedings of 2016 ACM Symposium on Document Engineering, pp. 119–122 (2016). https://doi.org/10.1145/2960811.2967152

  24. Shigarov, A.O., Mikhailov, A.A.: Rule-based spreadsheet data transformation from arbitrary to relational tables. Inf. Syst. 71, 123–136 (2017). https://doi.org/10.1016/j.is.2017.08.004

    Article  Google Scholar 

  25. e Silva, A.C.: Parts that add up to a whole: a framework for the analysis of tables. Ph.D. thesis, University of Edinburgh, Tampere, Finland (2010)

    Google Scholar 

  26. e Silva, A.C., Jorge, A.M., Torgo, L.: Design of an end-to-end method to extract information from tables. Int. J. Doc. Anal. Recognit. (IJDAR) 8(2), 144–171 (2006)

    Article  Google Scholar 

  27. Yildiz, B., Kaiser, K., Miksch, S.: pdf2table: a method to extract table information from PDF files. In: Proceedings of 2nd Indian International Conference on Artificial Intelligence, Pune, India, pp. 1773–1785 (2005)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Russian Foundation for Basic Research (grants 18-07-00758 and 17-47-380007). The prototype of TabbyPDF is deployed on resources of the Shared Equipment Center of Integrated Information and Computing Network for Irkutsk Research and Educational Complex (http://net.icc.ru).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Shigarov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shigarov, A., Altaev, A., Mikhailov, A., Paramonov, V., Cherkashin, E. (2018). TabbyPDF: Web-Based System for PDF Table Extraction. In: Damaševičius, R., Vasiljevienė, G. (eds) Information and Software Technologies. ICIST 2018. Communications in Computer and Information Science, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-319-99972-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99972-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99971-5

  • Online ISBN: 978-3-319-99972-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics