Skip to main content

The Use of an Artificial Neural Network for a Sea Bottom Modelling

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 920))

Included in the following conference series:

Abstract

Currently data are often acquired by using various remote sensing sensors and systems, which produce big data sets. One of important product are digital models of geographical surfaces that include the sea bottom surface. To improve their processing, visualization and management is often necessary reduction of data points. Paper presents research regarding the application of neural networks for bathymetric geodata reductions. Research take into consideration radial networks, single layer perceptron and self-organizing Kohonen network. During reconstructions of sea bottom model, results shows that neural network with less number of hidden neurons can replace original data set. While the Kohonen network can be used for clustering during reduction of big geodata. Practical implementation of neural network with creation of surface models and reduction of bathymetric data is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balicki, J., Kitowski, Z., Stateczny, A.: Artificial neural networks for modelling of spatial shape of sea bottom. In: IV Conference of Neural Networks and Their Applications, Zakopane (1999)

    Google Scholar 

  2. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  3. Carlson, R.E., Foley, T.A.: Radial Basis Interpolation Methods on Track Data, Lawrence Livermore National Laboratory, No. UCRL-JC-1074238 (1991)

    Google Scholar 

  4. Franke, R., Nielson, G.: Smooth interpolation of large sets of scattered data. Int. J. Numer. Methods Eng. 15, 1691–1704 (1980)

    Article  MathSciNet  Google Scholar 

  5. Franke, R.: Scattered data interpolation: test of some methods. Math. Comput. 38(157), 181–200 (1982)

    MathSciNet  MATH  Google Scholar 

  6. Haykin, S.: Neural Networks a Comprehensive Foundation. Macmillan College Publishing Company, New York (1994)

    MATH  Google Scholar 

  7. Kansa, E.J., Carlson, R.E.: Improved accuracy of multiquadric interpolation using variable shape parameter. Comput. Math. Appl. 24(12), 99–120 (1992)

    Article  MathSciNet  Google Scholar 

  8. Lubczonek, J., Stateczny, A.: Concept of neural model of the sea bottom surface. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing Book Series: Advances in Soft Computing, pp. 861–866. Physica, Heidelberg (2003). https://doi.org/10.1007/978-3-7908-1902-1_135

    Chapter  Google Scholar 

  9. Lubczonek, J.: Hybrid neural model of the sea bottom surface. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1154–1160. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24844-6_181

    Chapter  Google Scholar 

  10. Maleika, W., Palczynski, M., Frejlichowski, D.: Interpolation methods and the accuracy of bathymetric seabed models based on Multibeam Echosounder data. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ACIIDS 2012. LNCS (LNAI), vol. 7198, pp. 466–475. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28493-9_49

    Chapter  Google Scholar 

  11. Smith, M., Goodchild, M., Longley, P.: Geospatial Analysis - A Comprehensive Guide to Principles, Techniques and Software Tools, 3rd edn. (2009)

    Google Scholar 

  12. Stateczny, A., Kazimierski, W.: Determining manoeuvre detection threshold of GRNN filter in the process of tracking in marine navigational radars. In: Kawalec, A., Kaniewski, P. (eds.) 2008 Proceedings International Radar Symposium, Wrocław, pp. 242–245 (2008)

    Google Scholar 

  13. Stateczny, A.: Artificial neural networks for comparative navigation. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1187–1192. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24844-6_186

    Chapter  MATH  Google Scholar 

  14. Stateczny, A.: The neural method of sea bottom shape modelling for the spatial maritime information system. In: Brebbia, CA., Olivella, J. (eds.) Maritime Engineering and Ports II. Water Studies Series, Barcelona, vol. 9, pp. 251–259 (2000)

    Google Scholar 

  15. Tarwater, A.E.: A parameter study of Hardy’s multiquadric method for scattered data interpolation. Lawrence Livermore National Laboratory. Technical Report: UCRL-53670 (1985)

    Google Scholar 

  16. Wlodarczyk-Sielicka, M.: Importance of neighborhood parameters during clustering of bathymetric data using neural network. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2016. CCIS, vol. 639, pp. 441–452. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46254-7_35

    Chapter  Google Scholar 

  17. Wlodarczyk-Sielicka, M., Stateczny, A.: Fragmentation of hydrographic big data into subsets during reduction process. In: Proceedings of 2017 Baltic Geodetic Congress (Geomatics), 22–25 June 2017, Poland. Gdansk University of Technology (2017). https://doi.org/10.1109/bgc.geomatics.2017.67

  18. Wlodarczyk-Sielicka, M., Stateczny, A.: General concept of reduction process for big data obtained by interferometric methods. In: Rohling, H. (ed.) Proceedings of 18th International Radar Symposium (IRS 2017), Prague (2017). https://doi.org/10.23919/irs.2017.8008212. ISBN: 978-3-7369-9343-3

  19. Wlodarczyk-Sielicka, M., Stateczny, A.: Clustering bathymetric data for electronic navigational charts. J. Navig. 69(05), 1143–1153 (2016). https://doi.org/10.1017/s0373463316000035. The Royal Institute of Navigation 2016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Wlodarczyk-Sielicka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lubczonek, J., Wlodarczyk-Sielicka, M. (2018). The Use of an Artificial Neural Network for a Sea Bottom Modelling. In: Damaševičius, R., Vasiljevienė, G. (eds) Information and Software Technologies. ICIST 2018. Communications in Computer and Information Science, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-319-99972-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99972-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99971-5

  • Online ISBN: 978-3-319-99972-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics