Abstract
In this paper procedure for solving inverse heat conduction problem with fractional derivative is presented. Authors present time fractional heat conduction model with Caputo derivative and Neumann, Robin boundary conditions, which can be applied to describe process of heat conduction in porous media. Based on temperature measurements, functional describing error of approximate solution is created. Considered inverse problem is transform to find minimum of created functional. In order to solve inverse problem (find unknown parameters of model) authors applied an Ant Colony Optimization (ACO) algorithm. Finally, experiment with data from porous aluminum was carried out to check effectiveness of proposed algorithm. Goal of this paper is reconstruction unknown parameters in heat conduction model with fractional derivative and show that ACO is effective algorithm and works well in these type of problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Socha, K., Dorigo, M.: Ant colony optimization in continuous domains. Eur. J. Oper. Res. 185, 1155–1173 (2008)
Brociek, R., Słota, D.: Reconstruction of the Robin boundary condition and order of derivative in time fractional heat conduction equation. Math. Model. Nat. Phenom. 13 (2018). Article no 5
Brociek, R., Słota, D.: Application of real ant colony optimization algorithm to solve space fractional heat conduction inverse problem. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2016. CCIS, vol. 639, pp. 369–379. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46254-7_29
Brociek, R., Słota, D.: Reconstruction of the boundary condition for the heat conduction equation of fractional order. Therm. Sci. 19, 35–42 (2015)
Chen, S., Liu, F., Jiang, X., Turner, I., Burrage, K.: Fast finite difference approximation for identifying parameters in a two-dimensional space-fractional nonlocal model with variable diffusivity coefficients. SIAM J. Numer. Anal. 56, 606–624 (2016)
Dabiri, A., Moghaddam, P.B., Machado, J.A.T.: Optimal variable-order fractional PID controllers for dynamical systems. J. Comput. Appl. Math. 339, 40–48 (2018)
Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-72703-3
Ionescu, C., Lopes, A., Copot, D., Machado, J.A.T., Bates, J.H.T.: The role of fractional calculus in modelling biological phenomena: a review. Commun. Nonlin. Sci. Numer. Simul. 51, 141–159 (2017)
Ismailov, M.I., Cicek, M.: Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions. Appl. Math. Model. 40, 4891–4899 (2016)
Obrączka, A., Kowalski, J.: Modeling the distribution of heat in the ceramic materials using fractional differential equations. In: Szczygieł, M. (eds.) Materiały XV Jubileuszowego Sympozjum „Podstawowe Problemy Energoelektroniki, Elektromechaniki i Mechatroniki”, PPEEm 2012, Archiwum Konferencji PTETiS, Komitet Organizacyjny Sympozjum PPEE i Seminarium BSE, vol. 32, pp. 132–133 (2012). (in polish)
Xiaoran, L., Shangbo, Z., Hua, L., Hongbin, T., Ying, Q.: Rhythm oscillation in fractional-order Relaxation oscillator and its application in image enhancement. J. Comput. Appl. Math. 339, 69–84 (2018)
Brociek, R.: Implicit finite difference method for time fractional diffusion equations with mixed boundary conditions. Zeszyty Naukowe Politechniki Śląskiej, Matematyka Stosowana 4, 73–87 (2014)
Klafter, J., Lim, S., Metzler, R.: Fractional Dynamics: Resent Advances. World Scientific, New Jersey (2012)
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Cui, M., Zhao, Y., Xu, B., Gao, X.: A new approach for determining damping factors in Levenberg-Marquardt algorithm for solving an inverse heat conduction problem. Int. J. Heat Mass Transf. 107, 747–754 (2017)
Hetmaniok, E., Nowak, I., Słota, D., Wituła, R., Zielonka, A.: Solution of the inverse heat conduction problem with Neumann boundary condition by using the homotopy perturbation method. Therm. Sci. 17, 643–650 (2013)
Hetmaniok, E., Słota, D., Zielonka, A.: Parallel procedure based on the swarm intelligence for solving the two-dimensional inverse problem of binary alloy solidification. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 287–297. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3_27
Hetmaniok, E.: Inverse problem for the solidification of binary alloy in the casting mould solved by using the bee optimization algorithm. Heat Mass Transf. 52, 1369–1379 (2016)
Murio, D.: Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math. Appl. 53, 1492–1501 (2007)
Birvinskas, D., Jusas, V., Martisius, I., Damasevicius, R.: Data compression of EEG signals for artificial neural network classification. Inf. Technol. Control 42, 238–241 (2013)
Das, R., Akay, B., Singla, R.K., Singh, K.: Application of artificial bee colony algorithm for inverse modelling of a solar collector. Inverse Prob. Sci. Eng. 25, 887–908 (2017)
Jafrasteh, B., Fathianpour, N.: A hybrid simultaneous perturbation artificial bee colony and back-propagation algorithm for training a local linear radial basis neural network on ore grade estimation. Neurocomputing 235, 217–227 (2017)
Woźniak, M., Połap, D.: Hybrid neuro-heuristic methodology for simulation and control of dynamic systems over time interval. Neural Netw. 93, 45–56 (2017). https://doi.org/10.1016/j.neunet.2017.04.013
Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)
Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007)
Połap, D., Woźniak, M.: Polar bear optimization algorithm: meta-heuristic with fast population movement and dynamic birth and death mechanism. Symmetry 9(10), 203:1–203:20 (2017). https://doi.org/10.3390/sym9100203
Woźniak, M., Połap, D.: Adaptive neuro-heuristic hybrid model for fruit peel defects detection. Neural Netw. 98, 16–33 (2018). https://doi.org/10.1016/j.neunet.2017.10.009
Połap, D., Kęsik, K., Woźniak, M., Damaševičius, R.: Parallel technique for the metaheuristic algorithms using devoted local search and manipulating the solutions space. Appl. Sci. 8(2), 293:1–293:25 (2018). https://doi.org/10.3390/app8020293
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Brociek, R., Słota, D., Król, M., Matula, G., Kwaśny, W. (2018). Application of an Ant Colony Optimization Algorithm in Modeling the Heat Transfer in Porous Aluminum. In: Damaševičius, R., Vasiljevienė, G. (eds) Information and Software Technologies. ICIST 2018. Communications in Computer and Information Science, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-319-99972-2_30
Download citation
DOI: https://doi.org/10.1007/978-3-319-99972-2_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99971-5
Online ISBN: 978-3-319-99972-2
eBook Packages: Computer ScienceComputer Science (R0)