Skip to main content

Algorithms for convexity preserving interpolation of scattered data

  • Chapter
Advanced Course on FAIRSHAPE

Abstract

All convex interpolants to convex bivariate Hermite scattered data are bounded above and below by two piecewise linear functions u and l respectively. This paper discusses numerical algorithms for constructing u and l and how, in certain cases, they form the basis for constructing a Cl convex interpolant using Powell-Sabin elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carnicer, J. M.: Multivariate convexity preserving interpolation by smooth functions. Advances in Computational Mathematics 3 (1995), 395–404.

    Article  MathSciNet  MATH  Google Scholar 

  2. Carnicer, J. M., Dahmen, W.: Convexity preserving interpolation and Powell-Sabin elements. Computer Aided Geometric Design 9 (1992), 279–289.

    Article  MathSciNet  MATH  Google Scholar 

  3. Dahmen, W., Micchelli, C. A.: Convexity of multivariate Bernstein polynomials and box spline surfaces. Studia Scientiarum Mathematicorum Hungaricae, 23 (1988), 265–287.

    MathSciNet  MATH  Google Scholar 

  4. Mulansky, B.: Interpolation of scattered data by a bivariate convex function I: Piecewise linear C° -interpolation. Memorandum no. 858, University of Twente, 1990.

    Google Scholar 

  5. Powell, M. J. D., Sabin, M. A.: Piecewise quadratic approximations on triangles. ACM Transactions on Mathematical Software 3 (1977), 316–325.

    Article  MathSciNet  MATH  Google Scholar 

  6. Scott, D. S.: The complexity of interpolating given data in three-space with a convex function in two variables. J. Approx. Theory 42 (1984), 52–63.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Carnicer, J.M., Floater, M.S. (1996). Algorithms for convexity preserving interpolation of scattered data. In: Hoschek, J., Kaklis, P.D. (eds) Advanced Course on FAIRSHAPE. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-82969-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-82969-6_14

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-02634-1

  • Online ISBN: 978-3-322-82969-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics