Skip to main content

Abstract schemes for functional shape-preserving interpolation

  • Chapter
Advanced Course on FAIRSHAPE
  • 59 Accesses

Abstract

Aim of this paper is to present a general and abstract method for the construction of constrained functions and describe its modifications and applications — developed in the recent years — in the field of functional shape-preserving interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellman, R. and S. Dreyfus: Applied Dynamic Programming. Princeton University Press, New York, 1962.

    MATH  Google Scholar 

  2. Burmeister, W., W. Heß and J. W. Schmidt: Convex spline interpolants with minimal curvature. Computing 35 (1985), 219–229.

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheney, E.W, and A. Goldstein: Proximity maps for convex sets. Proc. Amer. Math. Soc. 10 (1959), 448–450.

    Article  MathSciNet  MATH  Google Scholar 

  4. Costantini, P.: Splines vincolate localmente ed interpolazione monotona e convessa. In Atti del Convegno di Analisi Numerica, de Frede Editore, Napoli, 1985.

    Google Scholar 

  5. Costantini, P.: On monotone and convex spline interpolation. Math. Comp., 46 (1986), 203–214.

    Article  MathSciNet  MATH  Google Scholar 

  6. Costantini, P.: An algorithm for computing shape-preserving interpolating splines of arbitrary degree. J. Comp. Appl. Math., 22 (1988), 89–136.

    Article  MathSciNet  MATH  Google Scholar 

  7. Costantini, P.: On 2-D interpolation and highly separable constraints. Università di Siena, Rapporto Matematico n. 242, 1992.

    Google Scholar 

  8. Costantini, P.: A general method for constrained curves with boundary conditions. In Multivariate Approximation: From CAGD to Wavelets, K. Jetter and F.I. Utreras (eds.), World Scientific Publishing Co., Inc., Singapore, 1993.

    Google Scholar 

  9. Costantini, P.: Boundary valued shape-preserving interpolating splines. Preprint, 1996, submitted to ACM Trans. Math. Software.

    Google Scholar 

  10. Costantini, P.: BVSPIS: a package for computing boundary valued shape-preserving interpolating splines. Preprint, 1996, submitted to ACM Trans. Math. Software.

    Google Scholar 

  11. Costantini, P. and R. Morandi: Monotone and convex cubic spline interpolation. CALCOLO, 21 (1984), 281–294.

    Article  MathSciNet  MATH  Google Scholar 

  12. Costantini, P. and R. Morandi: An algorithm for computing shape-preserving cubic spline interpolation to data. CALCOLO, 21 (1984), 295–305.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ferguson, D.R.: Construction of curves and surfaces using numerical optimization techniques. Comput. Aided Design, 18 (1986), 15–21.

    Article  Google Scholar 

  14. Fiorot, J.C., Tabka, J.: Shape preserving C 2 cubic polynomial interpolating splines. Math. Comp., 57 (1991), 291–298.

    MathSciNet  MATH  Google Scholar 

  15. Fritsch, R.E. and R.E. Carlson: Monotone piecewise cubic interpolation. SIAM J. Nu-mer. Anal, 17 (1980), 238–246.

    Article  MathSciNet  MATH  Google Scholar 

  16. Greiner, H.: A survey on univariate data interpolation and approximation by splines of given shape. Mathl. Comput. Modelling, 15 (1991), 97–106.

    Article  MathSciNet  MATH  Google Scholar 

  17. Heß,W. and J.W. Schmidt: Convexity preserving interpolation with exponential splines. Computing 36 (1986), 335–342.

    Article  MathSciNet  Google Scholar 

  18. Micchelli, C.A. and F.I. Utreras: Smoothing and interpolation in a convex subset of Hilbert space. SIAM J. Sci. Stat. Comp., 9 (1988), 728–746.

    Article  MathSciNet  MATH  Google Scholar 

  19. Morandi, R. and P. Costantini: Piecewise monotone quadratic histosplines. SIAM J. Sci. Stat. Comp. 10 (1989), 397–406.

    Article  MathSciNet  MATH  Google Scholar 

  20. Schmidt, J.W.: Convex interval interpolation with cubic splines. BIT 26 (1986), 377–387.

    Article  MathSciNet  MATH  Google Scholar 

  21. Schmidt, J.W.: On shape-preserving spline interpolation: existence theorems and determination of optimal splines. Approximation and Function Spaces, Banach Center Publications, Volume 22, PWN-Polish Scientific Publishers, Warsaw, 1989.

    Google Scholar 

  22. Schmidt, J.W.: Staircase algorithm and construction of convex spline interpolants up to the continuity C 3. Computer Math. Applic. 31 (1996), 67–79.

    Article  MATH  Google Scholar 

  23. Schmidt, J.W. and W. Heß: Schwach verkoppelte Ungleichungssysteme und konvexe Spline-Interpolation. El. Math. 39 (1984), 85–96.

    MATH  Google Scholar 

  24. Schmidt, J.W. and W. Heß: Quadratic and related exponential splines in shape-preserving interpolation. J. Comp. Appl. Math. 18 (1987), 321–329.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Costantini, P. (1996). Abstract schemes for functional shape-preserving interpolation. In: Hoschek, J., Kaklis, P.D. (eds) Advanced Course on FAIRSHAPE. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-82969-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-82969-6_15

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-02634-1

  • Online ISBN: 978-3-322-82969-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics