Abstract
Aim of this paper is to present a general and abstract method for the construction of constrained functions and describe its modifications and applications — developed in the recent years — in the field of functional shape-preserving interpolation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bellman, R. and S. Dreyfus: Applied Dynamic Programming. Princeton University Press, New York, 1962.
Burmeister, W., W. Heß and J. W. Schmidt: Convex spline interpolants with minimal curvature. Computing 35 (1985), 219–229.
Cheney, E.W, and A. Goldstein: Proximity maps for convex sets. Proc. Amer. Math. Soc. 10 (1959), 448–450.
Costantini, P.: Splines vincolate localmente ed interpolazione monotona e convessa. In Atti del Convegno di Analisi Numerica, de Frede Editore, Napoli, 1985.
Costantini, P.: On monotone and convex spline interpolation. Math. Comp., 46 (1986), 203–214.
Costantini, P.: An algorithm for computing shape-preserving interpolating splines of arbitrary degree. J. Comp. Appl. Math., 22 (1988), 89–136.
Costantini, P.: On 2-D interpolation and highly separable constraints. Università di Siena, Rapporto Matematico n. 242, 1992.
Costantini, P.: A general method for constrained curves with boundary conditions. In Multivariate Approximation: From CAGD to Wavelets, K. Jetter and F.I. Utreras (eds.), World Scientific Publishing Co., Inc., Singapore, 1993.
Costantini, P.: Boundary valued shape-preserving interpolating splines. Preprint, 1996, submitted to ACM Trans. Math. Software.
Costantini, P.: BVSPIS: a package for computing boundary valued shape-preserving interpolating splines. Preprint, 1996, submitted to ACM Trans. Math. Software.
Costantini, P. and R. Morandi: Monotone and convex cubic spline interpolation. CALCOLO, 21 (1984), 281–294.
Costantini, P. and R. Morandi: An algorithm for computing shape-preserving cubic spline interpolation to data. CALCOLO, 21 (1984), 295–305.
Ferguson, D.R.: Construction of curves and surfaces using numerical optimization techniques. Comput. Aided Design, 18 (1986), 15–21.
Fiorot, J.C., Tabka, J.: Shape preserving C 2 cubic polynomial interpolating splines. Math. Comp., 57 (1991), 291–298.
Fritsch, R.E. and R.E. Carlson: Monotone piecewise cubic interpolation. SIAM J. Nu-mer. Anal, 17 (1980), 238–246.
Greiner, H.: A survey on univariate data interpolation and approximation by splines of given shape. Mathl. Comput. Modelling, 15 (1991), 97–106.
Heß,W. and J.W. Schmidt: Convexity preserving interpolation with exponential splines. Computing 36 (1986), 335–342.
Micchelli, C.A. and F.I. Utreras: Smoothing and interpolation in a convex subset of Hilbert space. SIAM J. Sci. Stat. Comp., 9 (1988), 728–746.
Morandi, R. and P. Costantini: Piecewise monotone quadratic histosplines. SIAM J. Sci. Stat. Comp. 10 (1989), 397–406.
Schmidt, J.W.: Convex interval interpolation with cubic splines. BIT 26 (1986), 377–387.
Schmidt, J.W.: On shape-preserving spline interpolation: existence theorems and determination of optimal splines. Approximation and Function Spaces, Banach Center Publications, Volume 22, PWN-Polish Scientific Publishers, Warsaw, 1989.
Schmidt, J.W.: Staircase algorithm and construction of convex spline interpolants up to the continuity C 3. Computer Math. Applic. 31 (1996), 67–79.
Schmidt, J.W. and W. Heß: Schwach verkoppelte Ungleichungssysteme und konvexe Spline-Interpolation. El. Math. 39 (1984), 85–96.
Schmidt, J.W. and W. Heß: Quadratic and related exponential splines in shape-preserving interpolation. J. Comp. Appl. Math. 18 (1987), 321–329.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1996 B. G. Teubner Stuttgart
About this chapter
Cite this chapter
Costantini, P. (1996). Abstract schemes for functional shape-preserving interpolation. In: Hoschek, J., Kaklis, P.D. (eds) Advanced Course on FAIRSHAPE. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-82969-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-322-82969-6_15
Publisher Name: Vieweg+Teubner Verlag
Print ISBN: 978-3-519-02634-1
Online ISBN: 978-3-322-82969-6
eBook Packages: Springer Book Archive