Abstract
The main goal of this paper is to present some results obtained in functional shape-preserving interpolation using variable degree polynomial splines, and show how these functions are emerging as a powerful tool both in tension methods and in CAGD applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barsky, B.: Computer graphics and geometric modeling using Beta-splines. Springer Verlag, 1988.
Böhm, W., G. Farin, and J. Kahman: A survey of curves and surfaces methods in CAGD. Computer Aided Geom. Design, 1 (1984), 1–60.
de Boor, C.: A practical guide to splines. Springer, Berlin, 1978.
Clements J.C.: Convexity preserving piecewise rational cubic interpolation. SIAM J. Numer. Anal. 27(1990), 1016–1023.
Cline, A.K.: Scalar and planar valued curve fitting using splines under tension. Commun A.C.M., bf 17 (1974), 218–223.
Clough, R.W. and J.L. Tocher: Finite element stiffness matrices for analysis of plates in bending. in Proc. Conf. on Matrix Methods in Structural Mechanics, Wright-Patterson A.F.B., Ohio 1965.
Costantini, P.: On monotone and convex spline interpolation. Math. Comp., 46 (1986), 203–214.
Costantini, P.: Co-monotone interpolating splines of arbitrary degree. A local approach. SIAM J. Sci. Statist. Comput., 8 (1987), 1026–1034.
Costantini, P.: An algorithm for computing shape-preserving interpolating splines of arbitrary degree. J. Comp. Appl. Math., 22 (1988), 89–136.
Costantini, P.: SPBSI1: a code for computing shape preserving bivariate spline interpolation. Universitâ di Siena, Report no. 216, 1989.
Costantini, P.: On some recent methods for shape-preserving bivariate interpolation. In Multivariate Interpolation and Approximation, W. Haussmann and K. Jetter (eds.) International Series in Numerical Mathematics, Vol. 94, Birkhäuser Verlag, Basel 59–68, 1990.
Costantini, P.: A general method for constrained curves with boundary conditions. In Multivariate Approximation: From CAGD to Wavelets, K. Jetter and F.I. Utreras (eds.), World Scientific Publishing Co., Inc., Singapore, 1993.
Costantini, P.: Boundary valued shape-preserving interpolating splines. Preprint, 1996, submitted to ACM Trans. Math. Software.
Costantini, P. and F. Fontanella: Shape preserving bivariate interpolation. SIAM J. Num. Anal., 27 (1990), 488–506.
Costantini, P. and C. Manni: A local scheme for bivariate co-monotone interpolation. Computer Aided Geometric Design, 8 (1991), 371–391.
Costantini, P. and C. Manni: A bicubic shape-preserving blending scheme. Computer Aided Geom. Design, 13 (1996), 307–331.
Costantini, P. and C. Manni: Monotonicity-preserving interpolation of non-gridded data. Preprint, 1995, to appear in Computer Aided Geometric Design.
Costantini, P. and C. Manni: On a class of polynomial triangular macro-elements. Preprint, 1995, to appear in proceedings of the International Conference on Scattered Data Fitting,J. Comp. Appl. Math..
Costantini, P. and C. Manni: A local tension scheme for scattered data interpolation. Preprint, 1996, submitted to SIAM J. Numer. Anal..
Delbourgo, R.: Accurate C l rational interpolants in tension. SIAM J. Numer. Anal., 30 (1993), 595–607.
Delbourgo R. and J.A. Gregory:Piecewise rational quadratic interpolation to monotonic data. IMA J. Numer. Anal., 2 (1982), 123–130.
Delbourgo R. and J.A. Gregory: C2 rational quadratic spline interpolation to monotonic data. IMA J. Numer. Anal., 3 (1983), 141–152.
Delbourgo R. and J.A. Gregory: The determination of derivative parameters for a monotonic rational quadratic interpolant. IMA J. Numer. Anal., 5 (1985), 397–406.
Delbourgo R. and J.A. Gregory: Shape preserving piecewise rational interpolation. SIAM J. Sci. Stat. Comput., 6 (1985), 967–976.
Dyn, N., D. Levin and S. Rippa: Data dependent triangulations for scattered data interpolation. Appl. Numer. Math, 12 (1993), 89–105.
Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, Academic Press, London, 1988.
Foley T.A.: Interpolation with interval and point tension control using cubic weighted v-splines. ACM Trans. on Math. Softw., 13 (1987), 6896.
Foley T.A.: Local control of interval tension using weighted splines. Computer Aided Geom. Design 13 (1986), 281–294.
Foley T.A.: A shape preserving interpolant with tension controls. Computer Aided Geom. Design 5 (1988), 105–118.
Fritsch, R.E. and R.E. Carlson: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal., 17 (1980), 238–246.
Goodman T.N.T.: Shape preserving interpolation by parametric rational cubic splines. In International Series in Numerical Mathematics, vol 86, Birkhäuser Verlag, Basel, 1988, 149–158.
Goodman T.N.T.: Inflection of curves in two and three dimensions. Computer Aided Geom. Design 8 (1991), 37–50.
Goodman T N T and B.H. Ong: Shape preserving interpolation by space curves. University of Dundee, Report AA/963, 1996.
Goodman T.N.T. and K. Unsworth: Shape-preserving interpolation by parametrically defined curves. SIAM J. Numer. Anal 25 (1988), 1–13.
Goodman T N T and K. Unsworth: Shape preserving interpolation by curvature continuous parametric curves. Computer Aided Geom. Design 5 (1988), 323–340.
Goodman, T.N.T., H.B. Said and L.H.T. Chang: Local derivatives estimation for scattered data interpolation, Appl. Math. and Comp. 68 (1995), 41–50.
Gregory J. A.: Shape preserving rational spline interpolation. In Rational approximation and interpolation, Graves-Morris, Sarfaz and Varga (eds.), Springer, 1984, 431–441.
Gregory, J.A.: Shape-preserving spline interpolation. Comput. Aided Design, 18 (1986), 53–57.
Gregory J.A. and M. Sarfraz: A rational cubic spline with tension. Computer Aided Geom. Design 7 (1990), 1–13.
Heß,W. and J.W. Schmidt: Convexity preserving interpolation with exponential splines. Computing 36 (1986), 335–342.
Kaklis, P.D. and D.G. Pandelis: Convexity preserving polynomial splines of non uniform degree. IMA J. Numer. Anal. 10 (1990), 223–234.
Kaklis, P.D. and N.S. Sapidis: Convexity-preserving interpolatory parametric splines of non-uniform polynomial degree. Computer Aided Geometric Design 12 (1995), 1–26.
Kaufman, E.H. and G.D. Taylor: Approximation and interpolation by convexity-preserving rational splines. Constr. Approx., 10 (1994), 275283.
Kvasov, B.I.: GB-splines and algorithms of shape preserving approximation. Preprint, 1994, to appear on Int. J. on CAGD.
Lawson, C.L.: Software for C l surface interpolation. In J.R. Rice (ed.) Mathematical Software III, Academic Press, New York, 161–194, 1977.
Lorentz, G.G.: Bernstein Polynomials. University of Toronto Press, Toronto, 1953.
Nielson G.M.: Some piecewise polynomial alternatives to splines under tension. In Computer Aided Geomatric Design, R.E. Barnhill and R.F. Riesenfeld (eds.), Academic Press, 1974, 209–235.
Pruess, S.: Properties of splines in tension. J. Approx. Theory, 17 (1976), 86–96.
Pruess, S.: Alternatives to exponential splines in tension. Math. Comp., 33 (1979), 1273–1281.
Quak, E. and L.L. Schumaker: Cubic spline fitting using data dependent triangulations. Computer Aided Geometric Design 7 (1990), 293–301.
Renka, R.J.: Algorithm 716. TSPACK: Tension spline curve fitting package. ACM Trans. Math. Software 19 (1993), 81–94.
Rentrop, P.: An algorithm for the computation of the exponential spline. Numer. Math., 35 (1980), 81–93.
Rentrop P. and U. Weyer: Computational strategies for the tension parameters of the exponential spline. In: Lecture Notes in Control and Information Sciences, Vol. 95, 1987, 122–134.
Rippa, S.: Long thin triangles can be good for linear interpolation. S.AM J. Numer. Anal. 20 (1992), 257–270.
Sapidis N.S. and P.D. Kaklis: An algorithm for constructing convexity and monotonicity-preserving splines in tension. Computer Aided Geom. Design, 5 (1988), 127–137.
Sapidis N.S. and P.D. Kaklis: A method for computing the tension parameters in convexity-preserving spline in tension interpolation. Numer. Math., 54 (1988), 179–192.
Schmidt, J.W.: On shape preserving spline interpolation: existence theorems and determination of optimal splines. Approximation and Function Spaces, Banach Center Publications, Volume 22, PWN-Polish Scientific Publishers, Warsaw, 1989.
Schmidt, J. W.: Rational biquadratic C 1 splines in S-convex interpolation. Computing 47 (1991), 87–96.
Schmidt J. W. and W. Heß: Convexity preserving interpolation with exponential splines. Computing, 36 (1986), 335–342.
Schmidt, J.W. and W. Heß: Quadratic and related exponential splines in shape-preserving interpolation. J. Comp. Appl. Math. 18 (1987), 321–329.
Schumaker, L.L.: Computing optimal triangulations in polygonal domains. Computer Aided Geometric Design 10 (1993), 329–345.
Schweikert, D.G.: Interpolatory tension splines with automatic selection of tension factors. J. Math. Phis. 45 (1966), 312–317.
Späth, H.: Exponential spline interpolation. Computing, 4 (1969), 225–233.
Späth, H.: Spline algorithms for curves and surfaces. Utilitas Mathematica Publishing Incorporated, Winnipeg, 1974.
Strang, G. and G. Fix: An Analysis of the Finite Element Method. Prentice-I Hall, Englewood Cliffs, NJ, 1973.
Weyer, U.: Non-negative exponential splines. CAD, 20 (1988), 11–16.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1996 B. G. Teubner Stuttgart
About this chapter
Cite this chapter
Costantini, P. (1996). Shape-preserving interpolation with variable degree polynomial splines. In: Hoschek, J., Kaklis, P.D. (eds) Advanced Course on FAIRSHAPE. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-82969-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-322-82969-6_8
Publisher Name: Vieweg+Teubner Verlag
Print ISBN: 978-3-519-02634-1
Online ISBN: 978-3-322-82969-6
eBook Packages: Springer Book Archive