
On View Transformation Support for a Native XML DBMS

Daofeng Luo1, Ting Chen2, Tok Wang Ling2, Xiaofeng Meng1

1 School of Information, Renmin University of China
Beijing 100872, China
xfmeng@ruc.edu.cn

2 School of Computing, National University of Singapore
Lower Kent Ridge Road, Singapore 119260

{chent,lingtw} @comp.nus.edu.sg

Abstract. XML is becoming the standard data exchange format. View
transformation of XML data is important and frequent operation in XML data
integration and publishing. In schema-based view transformation, users define
view schema over sources to obtain view results. This declarative approach
alleviates user from writing complex scripts to perform view transformation.
Current available schema formats are unable to express views with complex
semantic constraints. In this paper, we introduce a semantically expressive
XML data model: Object-Relationship-Attribute model for Semi-Structured
data (ORA-SS), which allows users to define view schemas with rich semantic
meanings. Combine with ORA-SS, we use a native XML DBMS: OrientStore
to perform accurate and efficient view transformation.

1 Introduction

Traditionally, view is an important aspect of data processing. In the context of XML,
there are two main approaches to define views over source XML data. One way is to
define views or queries in script languages like XQuery[7] or XSLT[8]. The
alternative approach is to define views through source schema and view schema
mappings. Systems like Clio[6] fall into this category. This declarative approach
alleviates user from writing complex scripts to perform view transformations. Schema
mappings can then be translated into XQuery (or XSLT) scripts or sequence of
operations in back-end XML query processors. In this paper, we focus on view
transformation through schema mapping.
 View transformation via schema mapping needs an expressive XML schema
representation. To see this, let us examine a sample XML document in Fig. 1(a). It
contains information about researchers working under different projects and their
publication lists (Note that the publication lists are not dependant on which project the
researchers work in). To use simple tree/graph-structure schema languages for view
(target) schemas (very similar to the one used in Clio) causes ambiguity. For example,
the view schema in Fig. 1(c) can be interpreted in two different ways:
 1. For each project, list all the papers published by project members; for each
paper of the project, list all the authors of the paper.

2. For each project, list all the papers published by project members; for each
paper of the project, list all the authors of the paper who are working for the project.

The different interpretations result in different view results. In this paper we
introduce a XML schema representation: Object-Relationship-Attribute model for
Semi-Structured data (ORA-SS) [2], which can clearly define the semantics of source
data and views. We next show how to process view transformations defined by
schema mapping efficiently on a native XML DBMS OrientStore [5].

This paper is organized as follows: Section 2 introduces our XML data model
ORA-SS and our native XML DBMS: OrientStore. Section 3 presents the view
transformation algorithm. Section 4 shows the performance of our view
transformation algorithm. Section 5 concludes the paper.
<root>
 <Project J_Name="j1">
 <Researcher R_Name="r1">
 <Paper P_Name="p1" Year=”2001”/>
 </Researcher>
 <Researcher R_Name="r2">
 <Position>Leader</Position>
 <Paper P_Name="p1" Year=”2001”/>
 <Paper P_Name="p2" Year=”2002”/>
 </Researcher>
 <Project J_Name="j2">
 <Researcher R_Name="r2">
 <Position>Staff</Position>
 <Paper P_Name="p1" Year=”2001”/>
 <Paper P_Name="p2" Year=”2002”/>
 </Researcher>
 <Researcher R_Name="r3">
 <Position>Leader</Position>
 <Paper P_Name="p2" Year=”2002”/>
 </Researcher>
 </Project>
</root>

(a) A sample XML document

Fig. 1. A sample XML document with source and view schemas

2 System and Data Model for View Processing

In this section, we first introduce the conceptual data model used in view
transformations. Next we give an overview over our XML DBMS: OrientStore.

2.1 ORA-SS (Object-Relationship-Attribute model for Semi-Structured data)

ORA-SS is a semantically expressive data model [2]. It has two important types of
diagrams. An ORA-SS instance diagram represents a XML document while an ORA-
SS schema diagram models the schema. An ORA-SS schema diagram has the
following basic concepts: (1) Object Class (2) Relationship Type: Two or more
object classes are connected via a relationship type in schema diagram. (3)Attribute:
Attributes are properties of an object class or a relationship type. For each object class,

� Root
 � Project
 � J_Name
 �Researcher
 � R_Name
 � Position
 � Paper
 � P_Name
 � Year
 (b) DTD-like schema for document in (a)

� Root
 � Project
 � J_Name
 �Paper
 � P_Name
 � Researcher
 � R_Name
 (c) View schema

an ORA-SS schema indicates which relationship types it participates in. Similarly for
each attribute, an ORA-SS schema explicitly indicates its owner object class or
relationship type. These features are not present in DTD or XML Schema.

Let us examine an example. Figure 2(a) shows an ORA-SS schema diagram for the
XML file in Fig. 1a. The ORA-SS schema diagram explicitly indicates the following
facts about XML documents conforming to the schema: (1) There are two binary
relationship types in the schema: Project-Researcher (JR) and Researcher-Paper (RP).
A project can have several researchers and a researcher can work in different projects.
Meanwhile, the set of papers under a researcher doesn’t depend on the project he/she
works in. (2) Position is an attribute of relationship type JR instead of
Researcher. This means that a researcher may hold different positions across
projects he works in. (3) Year is a single-valued attribute of object class Paper.
Different occurrences of the same paper will always have the same Year value. (4)
J_Name,R_Name and P_Name are identifiers of object classes Project ,
Researcher and Paper respectively, as indicated by solid circles.

Fig. 2. (a) The ORA-SS schema diagram for the XML file in Fig 1(a). (b) and (c)
Two different view schemas defined over the source schema in (a)

 ORASS schema diagrams can be used to define views. Semantic meanings of
views can be inferred from their ORA-SS view schemas. In Fig.2b and Fig.2c,
although the two view schemas over source schema in Fig 2a look nearly identical,
they represent quite different semantic meanings:
 1. Fig. 2(b) has two binary relationship types. It is designed to find all the papers
published by researchers in a project; and for each paper to find all of its authors.
 2. Fig. 2(c) has only one ternary relationship type. The view is defined to find all
the papers published by researchers in a project; however, for each paper Fig 2(c)
only wants to finds authors working for the project.
 In other words, the schema in Fig 2(b) requires that Project j, Paper p and
Researcher r are on the same path in the view if j is on the same path P as p AND p is
on the same path P’ as r in the source data (P may not be same as P’), whereas Fig
2(c) requires j, p and r should locate on the same path in the source.

Year

Paper

Researcher

Project

R_Name

P_Name

J_Name

Position

JR

JR;2

RP;2

Researcher

Paper

Project

P_Name

R_Name

J_Name

JP;2

PR;2

 Researcher

Paper

Project

P_Name

R_Name

J_Name

JPR;3

(a) (b) (c)

2.2 OrientStore

OrientStore is a native XML DBMS which targets for the storage and query
processing of XML data. OrientStore uses Element-Based Clustering (EBC) storage
strategy. EBC treats an element node together with its attribute nodes and text nodes
(if any) as a single record. Element nodes (records) with the same tag name are
clustered and organized as a list. This clustering method facilitates fast retrievals of
elements of the same tag and structural join[1] of two element lists, both of which are
important query operations. EBC gives numbers for nodes in XML document.
Numbers for nodes in XML data tree can be calculated in the following manner: (1)
The root element has number 1. (2) Perform a pre-order traversal (i.e. Document
order) on the XML document. For node x:

 Number(x) = Number(x.parent) + “.” + position of x in x.parent’s child List
 It is easy to see that the numbering scheme can tell if two nodes are located along
the same path in constant time. As an example, for the XML file shown in Fig. 1(a),
there are four clusters allocated based on the ORASS schema in Fig. 2(a):
Project(with J_Name), Researcher (with R_Name), Paper(with P_Name and Year) ,
Position. The streams are shown as follows. The records in the streams are separated
by semi-colons and the numbers for records are shown in the parentheses.

Project: j1 (1.1); j2 (1.2)
Researcher: r1 (1.1.1); r2(1.1.2); r2(1.2.1); r3(1.2.2)
Paper: p1,2001(1.1.1.1); p1,2001(1.1.2.1); p2,2002(1.1.2.2);

p1,2001(1.2.1.1); p1,2001(1.2.1.2); p2,2002(1.2.2.1)
Position : Leader(1.1.2.3); Staff(1.2.1.3); Leader(1.2.2.2)

3 View Transformation

 In this section, we present the highlight of our view transformation algorithm. We
use a bottom-up view transformation algorithm. We use the view schema in Fig. 2(b)
as the example. In our algorithm, the relationship Paper-Researcher in the view
schema is constructed first. As Fig. 3(a) shows, we perform a structural join [1] on
element clusters Paper and Researcher, with the result list sorted on object numbers
of Paper. It should be noted that a merge at this stage is necessary because different
occurrences of the same paper now have only partial author list. However, a normal
merge (e.g. merge the three p1 instances) will result in an unsorted paper list which
can’t be used in subsequent structural joins. Instead we keep the order of paper
objects intact and just merge the author lists for each distinct paper. To avoid
duplicates, we put the merged child list under the first occurrence ONLY and let other
duplicated objects point to the first copy. Next we perform another structural join on
cluster project and the sorted paper list. Because project has no more parent in the
view schema, we just perform a normal merge after the structural join. We can
perform a DFS on the result graph to get the XML output document. In essence,
object numbers are used for structural joins and object identifiers are used in merge
and dupliMerge phases. The number of rounds of structural joins and
merge/dupliMerge is determined by the number of relationships in the view schema.

Fig. 3. Bottom-Up View Transformation for view schema Fig 2b. p1 <= = = p1* means p1*’s
children list pointer refers to p1’s children list.

4 Experiments

In this section we present a summary of performance measurements of our view
transformation algorithm. We compare our method with state-of-art XML query
processing engines like SAXON[3] XSLT processor and Galax[4] XQuery processor.
Our test platform is a PC with Pentium-3 867MHz CPU and 512 Mbytes RAM
running Win XP. We synthesize the JRP (Project-Researcher-Paper) dataset.

Table 1. Performance summary of view transformation on JRP data set

Source Document View Running Time(Second) View
Schema Size(M

B)
of Objs # of Objs OrientStore SAXON

Ratio
(Saxon/
OrientStor
e)

40 270,000 600,000 42.1 -* >250 Fig 2b
80 540,000 1200,000 84.6 -* >250
40 270,000 480,000 30.1 58.6 1.9 Fig 2c
80 540,000 960,000 67.4 122.4 1.8

* The running times of SAXON 7.5(as well as Galax XQuery processors) are too large to measure.
 Our view transformation algorithm outperforms SAXON 7.5 in transformations
for all view schemas. Most noticeably, our algorithm performs transformation for

r1

p1

1.1.1.1

1.1.1

r2

p1

1.1.2.1

1.1.2

r2

p1

1.2.1.1

1.2.1

r2

p2

1.2.1.2

1.2.1

r3

p2

1.2.2.1

1.2.2

r2

p2

1.1.2.2

1.1.2

r1

p1

1.1.1.1

1.1.1

r2

p1*

1.1.2.1

1.1.2

p1*

1.2.1.1

p2*

1.2.1.2

r3

p2*

1.2.2.1

r2

p2

1.1.2.2

1.1.2 1.2.2

r1

p1

1.1.1.1

1.1.1
r2

p1*
1.1.2.1

1.1.2

p1*
1.2.1.1

p2*
1.2.1.2

r3

p2*
1.2.2.1

r2

p2
1.1.2.2

1.1.2 1.2.2

j1

1.1

j1

1.1

j2

1.2

j2

1.2

j2

1.2

j1

1.1

r1

p1

1.1.1.1

1.1.1
r2

1.1.2

p1*
1.2.1.1

p2*

1.2.1.2

r3 r2

p2

1.1.2 1.2.2

j1

1.1

j2

1.2

1.1.2.2

(a) Structural join cluster Paper and Researcher (b) Dupli-Merge based on Paper keys

(c) Structural join cluster Paper and Project (d) Merge based on Project keys

view schemas having multiple relationship types on one path (view schema in Fig 2b)
efficiently while the running time of SAXON is unacceptable even for small files.
The reason is that for each paper of a project j a document-wide search for its
complete author list is required because not all the authors work for the project j.

5 Conclusion

The starting point of this paper is the observation of the problems with two kinds of
XML view transformation systems. High level systems like Clio, which perform view
transformations via schema-mapping, have problems with defining views with
complex semantics. On the other hand, general systems like XSLT and XQuery
processors require user to write transformation scripts themselves. Our approach also
uses schema-mapping like those high-level systems; however, it performs view
transformation on a native XML DBMS: OrientStore. The use of ORA-SS as
underlying schema representation allows us to express view schemas with a great
variety of semantic meanings. At the same time, our system requires much less time
than general XML processors in processing view transformations.

Acknowledgements

This research was partially supported by the grants from 863 High Technology
Foundation of China under grant number 2002AA116030, the Natural Science
Foundation of China(NSFC) under grant number 60073014.

Reference:

1. Shurug Al-Khalifa, H. V. Jagadish, Nick Kouda, Jignesh M. Patel, Divesh

Srivastava, YuqingWu. Structural Joins: A Primitive for Efficient XML Query
Pattern Matching. In Proceedings of ICDE, 2002

2. Gillian Dobbie, Wu Xiaoying, Tok Wang Ling, Mong Li Lee: ORA-SS: An
Object-Relationship-Attribute Model for Semistructured Data TR21/00,
Technical Report, Department of Computer Science, National University of
Singapore, December 2000.

3. Michael Kay. SAXON XSLT Processor. http://saxon.sourceforge.net/
4. Galax. An XQuery Processor. http://db.bell-labs.com/galax/
5. Xiaofeng Meng, Daofeng Luo, Mong Li Lee, Jing An. OrientStore: A Schema

Based Native XML Storage System. In Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

6. Lucian Popa, Mauricio A. Hern´andez ,Yannis Velegrakis, Ren´ee J. Miller,
Felix Naumann, Howard Ho. Mapping XML and Relational Schemas with Clio.
In ICDE 2002 Demo, 2002

7. XQuery. http://www.w3.org/XML/Query
8. XSLT 2.0. http://www.w3.org/Style/XSL

