Abstract
We consider the problem of constructing perfect nonlinear multi-output Boolean functions satisfying higher order strict avalanche criteria (SAC). Our first construction is an infinite family of 2-ouput perfect nonlinear functions satisfying higher order SAC. This construction is achieved using the theory of bilinear forms and symplectic matrices. Next we build on a known connection between 1-factorization of a complete graph and SAC to construct more examples of 2 and 3-output perfect nonlinear functions. In certain cases, the constructed S-boxes have optimal trade-off between the following parameters: numbers of input and output variables, nonlinearity and order of SAC. In case the number of input variables is odd, we modify the construction for perfect nonlinear S-boxes to obtain a construction for maximally nonlinear S-boxes satisfying higher order SAC. Our constructions present the first examples of perfect nonlinear and maximally nonlinear multioutput S-boxes satisfying higher order SAC. Lastly, we present a simple method for improving the degree of the constructed functions with a small trade-off in nonlinearity and the SAC property. This yields functions which have possible applications in the design of block ciphers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bondy, J.A., Murthy, U.S.R.: Graph Theory with Applications. Macmillan Press, London (1977)
Canteaut, A., Videau, M.: Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 518–533. Springer, Heidelberg (2002)
Carlet, C.: On cryptographic propagation criteria for Boolean functions. Information and Computation 151, 32–56 (1999)
Canteaut, A., Carlet, C., Charpin, P., Fontaine, C.: Propagation Characteristics and Correlation-Immunity of Highly Nonlinear Boolean Functions. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 507–522. Springer, Heidelberg (2000)
Gupta, K.C., Sarkar, P.: Construction of Perfect Nonlinear and Maximally Nonlinear Multi-Output Boolean Functions Satisfying Higher Order Strict Avalanche Criteria. Cryptology e-print archive, http://eprint.iacr.org/2003/198
Kurosawa, K.: Almost security of cryptographic Boolean functions. Cryptology e-print archive, http://eprint.iacr.org/2003/075
Kurosawa, K., Satoh, T.: Design of SAC/PC(l) of order k Boolean functions and three other cryptographic criteria. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 434–449. Springer, Heidelberg (1997)
Kurosawa, K., Satoh, T.: Generalization of Higher Order SAC to Vector Output Boolean Functions. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, Springer, Heidelberg (1996)
MacWillams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North Holland, Amsterdam (1977)
Nyberg, K.: Perfect Nonlinear S-boxes. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 378–386. Springer, Heidelberg (1991)
Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts, R., Vandewalle, J.: Propagation Characteristics of Boolean Functions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 161–173. Springer, Heidelberg (1991)
Rothaus, O.S.: On bent functions. Journal of Combinatorial Theory, Series A 20, 300–305 (1976)
Sarkar, P., Maitra, S.: Construction of Nonlinear Boolean Functions with Important Cryptographic Properties. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 485–506. Springer, Heidelberg (2000)
Webster, A.F., Tavares, S.E.: On the Design of S-boxes. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gupta, K.C., Sarkar, P. (2003). Construction of Perfect Nonlinear and Maximally Nonlinear Multi-output Boolean Functions Satisfying Higher Order Strict Avalanche Criteria. In: Johansson, T., Maitra, S. (eds) Progress in Cryptology - INDOCRYPT 2003. INDOCRYPT 2003. Lecture Notes in Computer Science, vol 2904. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24582-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-24582-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20609-5
Online ISBN: 978-3-540-24582-7
eBook Packages: Springer Book Archive