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Abstract. Denoising of speech signals using a sliding discrete cosine
transforms (DCT) is proposed. A minimum mean-square error (MMSE)
estimator in the domain of a sliding DCT is derived. In order to provide speech
processing in real time, a fast recursive algorithm for computing the sliding
DCT is presented. The algorithm is based on a recursive relationship between
three subsequent local DCT spectra. Extensive testing has shown that
background noise in actual environment such as the helicopter cockpit can be
made imperceptible by proper choice of suppression parameters.

1   Introduction

Processing of speech degraded due to additive background noise is of interest in a
variety of tasks. For example, many speech transmission and coding systems, whose
design is predicated on a relatively noise-free environment, degrade quickly in quality
and performance in the presence of background noise. Thus, there is a considerable
interest in and application for the development of such systems, which compensate for
the presence of noise. In many cases, intelligibility is affected by background noise so
that a principal objective of a speech processing system may be to improve
intelligibility. Numerous systems have been proposed to remove or reduce
background noise [1-8]. These systems provide an apparent improvement in signal-to-
noise ratio, but intelligibility is in fact reduced. In this paper, an approach to speech
denoising on the base of a sliding DCT is used.

In many filtering and spectral analysis applications, the signals such as speech have
inherently infinite length. Moreover, since the signal properties (amplitudes,
frequencies, and phases) usually change with time, a single orthogonal transform is
not sufficient to describe such signals. As a result, the concept of short-time signal
processing with filtering in the domain of an orthogonal transform can be used [9].
The short-time orthogonal transform of a signal xk is defined as
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where wn is a window sequence, ψ(n,s) represents the basis functions of an orthogonal
transform. Equation (1) can be interpreted as the orthogonal transform of xk+n as
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viewed through the window wn. 
k
sX  displays the orthogonal transform characteristics

of the signal around time k. Note that while increased window length and resolution
are typically beneficial in the spectral analysis of stationary data, for time-varying
data it is preferable to keep the window length sufficiently short so that the signal is
approximately stationary over the window duration.

We assume that the window has finite length around n=0, and it is unity for all n∈[-
N1, N2]. Here N1 and N2 are integer values. This leads to signal processing in a sliding
window [10]. In other words, local filters in the domain of an orthogonal transform at
each position of a moving window modify the orthogonal transform coefficients of a
signal to obtain only an estimate of the pixel xk of the window. The choice of
orthogonal transform for sliding signal processing depends on many factors. The DCT
is one the most appropriate transform with respect to the accuracy of power spectrum
estimation from the observed data that is required for local filtering, the filter design,
and computational complexity of the filter implementation. For example, linear
filtering in the domain of DCT followed by inverse transforming is superior to that of
the discrete Fourier transform (DFT) because a DCT can be considered as the DFT of
a signal evenly extended outside its edges. This consequently attenuates boundary
(temporal aliasing) effects caused by circular convolution that are typical for linear
filtering in the domain of DFT. In the case of DFT, speech frames are usually
windowed to avoid temporal aliasing and to ensure a smooth transition of filters in
successive frames. For the filtering in the domain of DCT, the windowing operation
can be skipped. In such a manner the computational complexity can be further
reduced.

The presentation is organized as follows. In Section 2, we present computationally
efficient algorithm for computing the sliding DCTs. In Section 3, an explicit filter
formula minimizing the MMSE defined in the domain of the sliding DCT is derived.
We also test the filter performance in actual environment such as the helicopter
cockpit. Section 4 summarizes our conclusions.

2   Fast Algorithm for Computing the Sliding DCT

The discrete cosine transform is widely used in many signal processing applications
such as adaptive filtering, video signal processing, feature extraction, and data
compression. This is because the DCT performs close to the optimum Karhunen-
Loeve transform for the first-order Markov stationary data, when the correlation
coefficient is near 0.9 [11]. Four types of DCTs were classified [12]. The DCT
discussed in the paper is referred to the type-II. The kernel of the DCT is defined for
the order N as
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where n, s=0, 1,…, N-1; 
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factor N2  for the forward transform is neglected until the inverse transform. The

sliding cosine transform (SCT) is defined as
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where N=N1+N2+1, { k
sX ; s=0, 1,…, N-1} are the transform coefficients around time

k. The coefficients of the DCT can be obtained as { 200
kk XC = ; k

s
k
s XC = , s=1,…,

N-1}. We now derive fast algorithm for the SCT on the base of a recursive
relationship between three subsequent local DCT spectra [13]. The local DCT spectra
at the window positions k-1 and k+1 are given by
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Using properties of the cosine function and equations (4) and (5), we can write
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We see that the computation of the DCT at the window position k+1 involves values
of the input sequence xk as well as the DCT coefficients computed in two previous
positions of the moving window. The number of arithmetic operations required for
computing the sliding discrete cosine transform at a given window position is
evaluated as follows: the SCT for the order N with N=N1+N2+1 requires 2(N-1)
multiplication operations and 2N+5 addition operations; the DCT requires one extra
operation of multiplication. Table 1 lists numerical results of computational
complexity for the proposed algorithm and known fast DCT algorithms. Note that fast
DCT algorithms require the length of a moving window to be of a power of 2, N=2M.
In contrast, the length of a moving window for the proposed algorithm is an arbitrary
integer value determined by the characteristics of the signal to be processed.
We see that the proposed algorithm yields essentially better results when the length of
the window increases.
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Table 1. Number of multiplications and additions for computing the sliding DCT

Fast DCT[14, 15] Proposed algorithmM

Mult. Add. Mult. Add.
16 33 81 30 37
32 81 209 62 69
64 193 513 126 133

128 449 1217 254 261
256 1025 2817 510 517

The inverse algorithms for the sliding DCT can be written as follows.
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where  N=N1+N2+1. The computational complexity is N multiplication operations
and N addition operations. If xk is the central pixel of the window, that is, N1=N2 and
N=2N1+1, then the inverse transform is simplified to
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We note that in the computation only the spectral coefficients with even indices are
involved. The computation requires one multiplication operation and N1+1 addition
operations.

3   Denoising of Speech Signals in the Sliding DCT Domain

The objective of this section is to develop a noise suppression technique on the base
of the sliding DCT, and to test the algorithm performance in actual noise
environment. We design locally adaptive filters to enhance noisy speech. Assume that
a clean speech signal {ak} is degraded by zero-mean additive noise {vk}

kkk vax += , (9)

where {xk} is a noisy speech sequence.

Let { k
sX , k

sA , k
sV , k

sÂ ; s=0, 1,…, N-1} be the DCT transform coefficients around

time k of noisy speech, clean speech, noise, and filtered signal, respectively. Here
N=2N1+1 is the length of the DCT. Note that N1 is an arbitrary integer value, which is
determined by pitch period of speech. One can be chosen to be approximately as the
maximum expected pitch period for adequate frequency resolution.
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Various criteria can be exploited for the filter design. In the following analysis we
use the criterion of the MMSE around time k which is defined in the domain of DCT,
taking into account (8), as follows:
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where .E denotes the expected value.

As we mentioned above, the length of the window is chosen in such a way that noise

can be considered as stationary in the window. Let 
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filter to be designed around time k. By minimizing MMSEk with respect to k
tH , we

arrive to a version of the Wiener filter in the domain of DCT:
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The MMSE estimation of the processed speech in the domain of the sliding DCT is
given by
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The obtained filter can be considered as a spectral subtraction method in the domain
of sliding DCT. In general, spectral subtraction methods [1], while reducing the wide-
band noise, introduce a new “musical”' noise due to the presence of remaining
spectral peaks. To attenuate the “musical” noise, one can suggest oversubtraction of
the power spectrum of noise by introducing a nonzero power spectrum bias. Finally,
the MMSE estimation of the processed speech in the domain of the sliding DCT can
be written as follows:
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where Bk is a speech-dependent bias value.
The filtered speech signal can be obtained with use of (8). It also follows from (8) that
in the estimation only the spectral coefficients with even indices are involved.
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A test speech signal recorded in helicopter environment is presented in Fig.1. The
data was sampled at 16.00kHz. In our tests the window length of 761 samples is used.
The sliding squared DCT coefficients averaged over all positions of the running
window for noisy speech is presented in Fig. 2. The power spectrum of noise is
obtained by actual measurement from background noise in intervals where speech is
not presented. It is shown in Fig. 3. We see the difference in spectral distributions of
the speech and the helicopter noise, which will help us to suppress the helicopter
noise.

 
    Fig. 1. Time wavefront of helicopter speech       Fig. 2.  Average squared DCT magnitude
                                                                                              of noisy speech

 
           Fig. 4. Enhanced speech signal                       Fig. 3. Average squared DCT magnitude
                                                                                               of noise

The result of filtering by using the proposed filter is shown in Fig. 4. It is clearly that
the system is capable of significant noise reduction. Numerous formal subjective tests
are shown that the helicopter noise can be made imperceptible by proper choice of the
filter parameters in (13).

In this section we derived a filter for noise suppression on assumption that speech is
always was presented in the measured data. However, if a given frame of data
consists of noise alone, then obviously a better suppression filter can be used [5, 6]. In
general, an optimal algorithm should include a detector of voiced and unvoiced
speech signals. After detecting, different strategies of processing should be applied to
voiced and unvoiced speech signals.
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4   Conclusions

In this paper, we have presented a new technique for enhancing speech degraded by
additive noise. The technique utilizes the sliding DCT. A MMSE estimator in the
domain of the sliding DCT has been derived. In order to provide speech processing in
real time, a fast recursive algorithm for computing the sliding DCT has been
suggested. The algorithm requires essentially less operations of multiplication and
addition comparing with known fast DCT algorithms. Extensive testing has shown
that background noise such as in the helicopter cockpit can be significantly reduced
by proper choice of suppression parameters.
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