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Abstract. In this paper we address the problem of estimating the pa-
rameters of a Gaussian mixture model. Although the EM (Expectation-
Maximization) algorithm yields the maximum-likelihood solution it has
many problems: (i) it requires a careful initialization of the parameters;
(ii) the optimal number of kernels in the mixture may be unknown before-
hand. We propose a criterion based on the entropy of the pdf (probability
density function) associated to each kernel to measure the quality of a
given mixture model, and a modification of the classical EM algorithm to
find the optimal number of kernels in the mixture. We test this method
with synthetic and real data and compare the results with those obtained
with the classical EM with a fixed number of kernels.

1 Introduction

Gaussian mixture models, have been widely used in the field of statistical pattern
recognition. One of the most common methods for fitting mixtures to data is the
EM algorithm [4]. However, this algorithm is prone to initialization errors and, in
these conditions, it may converge to local maxima of the log-likelihood function.
In addition, the algorithm requires that the number of elements (kernels) in the
mixture is known beforehand. For a given number of kernels, the EM algorithm
yields a maximum-likelihood solution but this does not ensure that pdf of the
data (multi-dimensional patterns) is properly estimated. A maximum-likelihood
criterion with respect to the number of kernels is not useful because it tends to
use a kernel to describe each pattern.

The so called model-selection problem has been addressed in many ways.
Some approaches start with a few number of kernels and add new kernels
when necessary. For instance, in [14], the kurtosis is used as a measure of non-
Gaussianity yielding a test for splitting a kernel in one-dimensional data. In
[15] this method is extended to the multi-dimensional case. This approach has
same drawbacks, because kurtosis can be very sensitive to outliers. In [16] it is
proposed a greedy method, which performs a global search in combination with
another local search whenever a new kernel is added.
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Other model-selection methods start with a high number of kernels and pro-
ceed to fuse them. In [5][6], the EM algorithm is initialized with many ker-
nels randomly placed and then the Minimum-description length principle [9]
is applied to iteratively remove some of the kernels until the optimal number
of them is found. In [11], the proposed algorithm is allowed both to split and
fuse kernels. Kernel fusion arises when many patterns have the same posterior
probability and splitting is driven by the Kullback-Leibler divergence between a
component density and empirical density in the neighborhood of the component.
In this approach, the number of components remains unchanged.

In this paper we propose a method that starting with few kernels, typically
one, find the maximum-likelihood solution. Then it tests whether the underlying
pdf of each kernel is Gaussian and otherwise it replaces that kernel with two
kernels adequately separated from each other. In order to detect non-Gaussianity
we compare the entropy of the underlying pdf with the theoretical entropy of
a Gaussian. After two new kernels are introduced, our method performs several
steps of partial EM in order to obtain a new maximum-likelihood solution.

2 Gaussian-Mixture Models

A d-dimensional random variable y follows a finite-mixture distribution when its
pdf p(y|Θ) can be described by a weighted sum of known pdf’s named kernels.
When all these kernels are Gaussian, the mixture is named in the same way:

p(y|Θ) =
K∑
i=1

πip(y|Θi), where 0 ≤ πi ≤ 1, i = 1, ...,K, and
K∑
i=1

πi = 1, (1)

being K the number of kernels, π1, ..., πk the a priori probabilities of each
kernel, and Θi the parameters describing the kernel. In Gaussian mixtures,
Θi = {µi, Σi}, that is, the average vector and the covariance matrix.

The set of parameters of a given mixture is Θ ≡ {Θ1, ..., Θk, π1, ..., πk}. Ob-
taining the optimal set of parameters Θ∗ is usually posed in terms of maximizing
the log-likelihood of the pdf to be estimated:

5(Y |Θ) = log p(Y |Θ) = log
N∏
n=1

p(yn|Θ) =
N∑
n=1

log
K∑
k=1

πkp(yk|Θk). (2)

Θ∗ = arg max
Θ

5(Θ). (3)

where Y = {y1, ...yN} is a set of N i.i.d. samples of the variable Y .

2.1 EM Algorithm

The EM (Expectation-Maximization) algorithm [4] is an iterative procedure that
allows us to find maximum-likelihood solutions to problems involving hidden
variables. The EM algorithm generates a sequence of estimations of parameters
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{Θ∗(t), t = 1, 2, ...} by alternating an expectation step and the maximization
step until convergence. In the case of mixtures [8], the hidden variable can be
regarded as the kernel each data has been sampled from. The E-step estimates
the posterior probability that the data yn was sampled with the kernel k:

p(k|yn) = πkp(y(n)|k)/ΣK
j=1πjp(y

(n)|k) (4)

In M-step, the new parameters Θ∗(t+ 1) are given by:

πk =
1
N

N∑
n=1

p(k|yn), µk =
∑N
n=1 p(k|yn)yn∑N
n=1 p(k|yn)

and µk =
∑N
n=1 p(k|yn)yn∑N
n=1 p(k|yn)

. (5)

A detailed description of this classic algorithm is given in [8]. Here we focus
on the fact that if K is unknown beforehand it cannot be estimated through
maximizing the log-likelihood because 5(Θ) grows with K. Fig. 1 shows the
effect of using only a kernel, in classical EM algorithm with fixed number of
kernels, to describe two Gaussian distributions: density is underestimated giving
a poor description of the data. In the next section we describe the use of entropy
to test whether a given kernel properly describes the underlying data.

Fig. 1. Classic EM algorithm, fits erroneously data of a bimodal distribution (with
averages µ1 = [0, 0] y µ2 = [3, 2]) (left) to a Gaussian with µ = [1.5, 1] (right).

3 Entropy Estimation

Entropy is a basic concept in information theory. The entropy of a given variable
Y can be interpreted in terms of information, randomness, dispersion, and so on
[3][10]. For a discrete variable we have:

H(Y ) = −Ey[log(P (Y ))] = −
N∑
i=1

P (Y = yi) log p(Y = yi). (6)

where y1, ..., yN is the set of values of variable Y . A fundamental result of infor-
mation theory is that Gaussian variables have the maximum entropy among all
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the variables with equal variance. Consequently the entropy of the underlying
distribution of a kernel should reach a maximum when such a distribution is
Gaussian. This theoretical maximum entropy is given by:

H(Y ) =
1
2

log[(2πe)d|Σ|]. (7)

Then, in order to decide whether a given kernel is truly Gaussian or must be
replaced by two other kernels, we compare the estimated entropy of the underly-
ing data with the entropy of a Gaussian. However, one of the main problems of
this approach is that we must estimate, in principle, the pdf given a few samples
[12][13][17].

3.1 Entropy Estimation with Parzen’s Windows

The Parzen’s windows approach [7] is a non-parametric method for estimating
pdf’s for a finite set of patterns. The general form of these pdf’s using a Gaussian
kernel and assuming diagonal covariance matrix ψ = Diag(σ2

1 , ...σ
2
Na

) is:

P ∗(Y, a) ≡ 1
Na

∑
ya∈a

1∏d
i=1 σi(2π)d/2

d∏
j=1

exp

{
−1

2

(
yj − yja
σj

)2
}
, (8)

where a is a sample of the variable Y , Na is the size of the sample, yj represents
the j-th component of y and yja represents the j-th component of kernel ya.
In [12] it is proposed a method for adjusting the widths of the kernels using
maximum likelihood. Given the definition of entropy in Equation 6, we have:

Hb(Y ) ≡ −Eb[log(P (Y ))] = − 1
Nb

∑
yb∈b

log(P (yb)) = − 1
Nb

log(5(b)), (9)

where 5(b) is the likelihood of the data. As maximizing likelihood is equivalent
to minimice entropy, this approach consists of estimating the derivative of en-
tropy with respect to the widths of the kernels, and performs a gradient descent
towards the optimal widths:

∂

∂σd
H∗(Y ) =

1
Nb

∑
yb∈b

∑
ya∈a

Kψ(yb − ya)∑
ya∈aKψ(yb − ya)

(
1
σd

)(
[yb − ya]2d

σ2
d

− 1
)
, (10)

being σd the standard deviation in each dimension.
Given the optimal widths of the kernel, the entropy is estimated by

H∗(Y ) =
1
Nb

∑
yb∈b

log

(
1
Na

∑
ya∈a

Kψ(yb − ya))

)
, (11)

In Fig. 2 we show the entropy estimation obtained for a sample of a 2D
Gaussian variable with a diagonal covariance matrix with σ2

1 = 0.36 and σ2
2 =

0.09, for different widths. The approximation of the maximum entropy defined
in Equation 7 is 1.12307. From the shape of this function, it can be deduced that
the optimal widths lay in a wide interval and consequently their choice is not so
critical.
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Fig. 2. Representing entropy as a function of the widths of the Parzen’s kernels.

4 Optimal Model Selection with Maximum Entropy

4.1 Proposed Method

Comparing the estimations given for Equations 7 and 11, we have a way of
quantifying the degree of Gaussianity of a given kernel. Given a set of kernels
for the mixture (initially one kernel) we evaluate the real global entropy H(y)
and the theoretical maximum entropy Hmax(y) of the mixture by considering
the individual pairs of entropies for each kernel, and the prior probabilities:

H(Y ) =
K∑
k=1

πkHk(Y ) and Hmax(Y ) =
K∑
k=1

πkHmaxk
(Y ) . (12)

If the ratio H(y)/Hmax(y) is above a given threshold (typically 0.95) we consider
that all kernels are well fitted. Otherwise, we select the kernel with the lowest
individual ratio and it is replaced by two other kernels that are conveniently
placed. Then, a new EM starts.

As the estimation of the entropy of a kernel requires two data sets, we select
those whose distance to the average µk is between the limits of a Gaussian:
−3
√
λki ≤ bi ≤ 3

√
λki , with b = PTt (µk − y). λki , with i = 1, 2..d, are the

eigenvectors associated to the kernel, and b is the projection of a data y on the
eigenspace spanned by the eigenvectors of the covariance matrix collected in Pk.

4.2 Introducing a New Kernel

A low H(y)/Hmax(y) local ratio indicates that multimodality arises and thus
the kernel must be replaced by two other kernels. Applying PCA (Principal
Component Analysis) to the original kernel we find that the main eigenvector
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indicates the direction of maximum variability and we can put the two new
kernels along the opposite senses of this direction (Fig. 3). Being k the kernel with
low Gaussianity, after splitting it, the two new kernels k1 and k2 with parameters
Θk1 = (µk1 , Σk1) and Θk2 = (µk2 , Σk2) have the following initial averages µk1 =
µk+

√
λkV and µk2 = µk−

√
λkV, with λk the principal eigenvalue for kernel k

and V its associated normalized eigenvector. Furthermore, the width of the two

Fig. 3. The direction of maximum variability is associated to the eigenvector with
highest eigenvalue autovector λ1

new kernel is divided by two. If λ
′
k is the main eigenvalue in both kernels, then√

λ
′
k =

√
λk

2 , consecuently, Σk1 = Σk2 = 1
4Σk. Finally, the new priors should also

verify
∑K
k=1 πk = 1, so we initialize them with πk1 = πk2 = 1

2πk. The proposed
algorithm is described in Fig. 4.

Initialization: Start with a unique kernel. K = 1. Θ1 = {µ1, Σ1} with random values.
Repeat: Main loop

Repeat: E, M Steps
Estimate log-likelihood in iteration i: ,i

Until: |,i − ,i−1| < convergence threshold
Evaluate H(Y ) and Hmax(Y ) globally
If (H(Y )/Hmax < entropy threshold)

Select kernel k with the lowest ratio and decompose into k1 and k2

Initialize parameters Θk1 and Θk2

Initialize new averages: µk1 = µk +
√

λkV, µk2 = µk −
√

λkV
Initialize new covariance matrices: Σk1 = Σk2 = 1

4
Σk

Set new a priori probabilities: πk1 = πk2 = 1
2
πk

Else
Final = True

Until: Final = True

Fig. 4. Our maximum-entropy algorithm
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4.3 Validation of the Method

In order to test our approach we have performed several experiments with syn-
thetic and real data. In the first one we have generated 2500 samples from 5
bi-dimensional Gaussians with prior probabilities πk = 0.2 ∀k. Their averages
are: µ1 = [−1,−1]T , µ2 = [6, 3]T , µ3 = [3, 6]T , µ4 = [2, 2]T , µ5 = [0, 0]T and
their covariance matrices are

Σ1 = Σ5 =
[

0.20 0.00
0.00 0.30

]
, Σ2 =

[
0.60 0.15
0.15 0.60

]
, Σ3 =

[
0.40 0.00
0.00 0.25

]
, Σ4 =

[
0.60 0.00
0.00 0.30

]
.

We have used a Gaussianity threshold of 0.95, and a convergence threshold of
0.001 for the EM algorithm. In order to evaluate the robustness of the proposed
algorithm, several outliers were added to the data set. The sample size for es-
timating entropy through Parzen has been 75. We have found that despite this
small size, entropy estimation is good enough. Our algorithm converges after 30
iterations finding correctly the number of kernels. In Fig. 5 we show the evolu-
tion of the algorithm. We have also applied the classical EM with 5 kernels. We

Fig. 5. Evolution of our algorithm from one initial kernel to 5 real kernels.

have performed 20 experiments with the latter data but randomly placing the
kernels in each one. In 18 of the 20 experiments the classical EM finds a local
maxima. The averaged number of iterations needed was 95 (being 250 the max-
imum and 23 the minimum). Then, only in two cases the classical EM found the
global maxima using 21 and 31 iterations respectively. Thus, our approach ad-
dresses two basic problems of the classical EM: the initialization and the model
selection.

Finally, we have applied the proposed method to the well known Iris [2]
data set, that contains 3 classes of 50 (4-dimensional) instances referred to a
type of iris plant: Versicolor, Virginica and Setosa. Because the problem is 4-
dimensional, 50 samples are insufficient to construct the pdf using Parzen. In
order to test our method, we have generated 300 training samples from the aver-
ages and covariances of the original classes and we have checked the performance
in a classification problem with the original 150 samples. Starting with K = 1,
the method correctly selected K = 3. Then, a maximum a posteriori classifier
was built, with classification performance of 98% (only three Versicolor were
classified like Virginica).
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5 Conclusions and Future Work

In this paper we have presented a method for finding the optimal number of ker-
nels in a Gaussian mixture based on maximum entropy. We start the algorithm
with only one kernel and then we decide to split it on the basis of the entropy of
the underlying pdf. The algorithm converges in few iterations and is suitable for
density estimation and classification problems. We are currently validating this
algorithm in real image classification problems and also exploring new methods
of estimating entropy directly, bypassing the estimation of the pdf.
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