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Abstract. In this paper we propose a method for transforming a 3D
map of the environment, composed by a cloud of millions of points, into a
compact representation in terms of basic geometric primitives, 3D planes
in this case. These planes, with their texture, yield a very useful repre-
sentation in robot navigation tasks like localization and motion control.
Our method estimates the main planes in the environment (walls, floor
and ceiling) using point classification, based on the orientation of their
normal and its relative position. Once we have inferred the 3D planes we
map their textures using the appearance information of the observations,
obtaining a realistic model of the scene.

1 Introduction

Perception is a critical element in robot navigation tasks like map building (map-
ping) and self-localization. The quality of the map and its post-processing are
key for successfully performing these tasks. Early mapping solutions were based
on 2D information extracted with sonars [I]. In these cases, the environment is
modeled with an occupation grid [2]. In [3] [4] the 3D grids extracted from point
clouds are inferred with stereo vision. As these clouds have typically millions
of points it is impractical to manage them both in terms of data storage and
efficiency. Moreover, it is desirable to obtain representations of higher level of
abstractions. Thus, following the idea of “from pixels to geometric primitives”
the approach intoduced in [B] applies the Hough transform to find the vertical
planes (walls) of the environment from stereo data. However, in this case a high-
resolution partitioning of the parametric space, which feeds the voting process,
is required to find that a good approximation.

Planes have also been estimated using 3D range sensors like laser scans, which
produce a more dense information . In [6] it is proposed an adaptation of the
EM algorithm [7] for detecting planar patches in an indoor environment. The
approach proposed in [§] combines range information and appearance to recover
planar representations of outdoor scenes (buildings). However, these two latter
approaches require very dense sensors. Here we focus on the case of having a
stereo sensor, typically producing very noisy sparse information which is highly
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concentrated on high-textured areas. In this paper we obtain the main planes of
the scene (walls, floor and ceiling) assuming that the robot is moving in a plane-
parallel environment. In order to do so, we first group the 3D points in the map
(see [9] and for a complete description of our map-building process) using
the direction of their normals. Then, we fit a 3D plane to each group, and finally
we perform texture mapping using the information of the initial observations
coming from many points of view.

2 Sensor and Robot Models

In this paper we use the Digiclops trinoclular stereo system mounted on a Pioneer
mobile robot controlled with the Saphira library. Given these elements we define
an observation at time ¢, that is v; as the set of 3D observed points (p;j, nsj, ¢i;)
collected in matrix [v;;], where p;; are the coordinates of a given point, n;; a
normal vector which has to be estimated, and ¢;; is the grey level or color of the
point.

Assuming that the robot moves over a plane and that the focal axis of the
camera is always parallel to this plane, the state or pose of the robot at time
t is given by the robot’s coordinates at plane X Z and its relative angle with
respect the Y axis, that is ¢; = (x4, 2¢, o). Similarly, an action performed by
the robot at time ¢ is defined in terms of the increment of the current pose a; =
(Axy, Ayr, Aay), and a trajectory performed by the robot is the sequence of ¢
observations V! = {v1, v, ...,v;} and ¢ associated actions A® = {a1,az,...,a;:}.

Actions can be robustly estimated from observations, and by integrating the
trajectory performed by the robot through robust matching and alignment we
obtain a map consisting of a cloud of millions of 3D points (see [9] and [10] for
more details).

3 Estimating Points Normals

Here we focus on estimating the surface normal n;; for each point p;; at a
given observation v;. In order to do that we consider the 4 or 8 neighbors of
the points in the observation matrix [v;;], that is, we are exploiting the 2D
layout of the points (see Figure ). In order to improve robustness, instead of
consider each neighboring point, we consider neighboring regions of size [. For
each region R; we take its centroid r;. Then, given the considered point p;; and
the centroids {ry,rg,...,r,} of the n neighboring regions we build the vectors
a; = 1r; — pi;. Then, the normal n;; results from multiplying adjacent vectors in
counterclockwise sense and taking the average:

Nij = ((an X Oén_l) + (Oén_1 X Oén_g) +...+ (041 X an))/n (1)

As the quality of the latter estimation depends on the number of valid 3D
points inside a given region, we consider that the resulting normal is undefined
when there is not enough information to provide a robust estimate.
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Fig. 1. Estimating the normal at a point using 8 regions: Neighboring regions of size
5 x 5 (left), centroid for each region and associated vector (center), normal vector
resulting for applying Expression [ (right)

4 Vertical Planes Estimation

4.1 Removing Horizontal Planes

Assuming that the floor is flat and also that the height of the camera is constant,
and considering the fact that the floor and ceiling planes are usually low textured
and in this case their associated stereo points are typically very noisy, we remove
these latter planes and we focus on the vertical ones (walls) (see Figure ).

Fig. 2. Removing the floor and the ceiling. Complete scene with those planes (left).
Resulting scene after removing the planes (right).

Once we have only vertical planes, the problem of estimating these planes can
be posed in terms of finding in 2D the segments resulting from their projections
on the imaginary horizontal plane. In order to do that, we will build a Gaussian
Mixture Model classifier for 2D normals where each class is given by the set of
points with similar normals (associated to parallel walls). Next, we build the
planes associated to each class with a connected-components process.

4.2 Gaussian Mixture Model Classifier

Our one-dimensional mixtures-of-Gaussians classifier [I1] is built on a set of
n samples X = {x1,29,...,2,} that we want to fit with & Gaussian kernels
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with unknown parameters {(u1,01), (ti2,02), ..., (fk, 0k)}. We must estimate
the parameters that maximize the log-likelihood function:

n k n k
C=log [[D_mPlaili) =Y log > m; P(xil3) (2)
i=1j=1 i=1 =1

where 7; is the prior probability of belonging to the kernel j and P(x;|j) is
the probability for x; of a Gaussian centered on the kernel j. In order to find
the prior probabilities and the parameters of the kernels we apply the standard
EM (Expectation-Maximization) algorithm [7].

In the E-step (Expectation) we update the posterior P(j|z;), that is, the
probability that a pattern z; is generated by kernel j:

k
P(jlas) =y P(asli)/ Y mP(as|l) (3)
1=1
In the M-step (Maximization) we proceed to update the priors and the pa-
rameters of the kernels given the posteriors computed in the E-step:

_ 2im PGl = i1 Pljlwi)as 52— iy P(lzs) (i — py)*
n T L PGl T i1 P(lw:)
Alternating E and M steps the algorithm converges to the closest local max-

ima with respect to the initialization point. Then, we take the MAP estimate for
each normal: M AP(x;) = argmax; P(j|x;), where P(j|z;) = m; P(x;|7)/P(z;).

(4)

T

4.3 Classifying Normals

In order to classify each normal, we take the relative angle between the reference
vector (1,0,0) in the X Z plane. In Figure Bl we represent an example of clasifi-
cation with real data. We represent the original point cloud with the normal of
each point, and the directional histogram with four peaks associated to the four
types of parallel planes. Also, we show how are classified the points of the scene.
We have used k& = 4 kernels whose averages have been randomly initialized from
the interval [0, 360].

When the number of kernels is under 4 (for instance we may have only two
classes when the robot is in the middle of a corridor), the algorithm also converges
because in this case the prior probabilities of the non-existent classes tend to
zero. We illustrate this case in Figure[d. Finally, we also consider the pre-filtering
of noisy patterns (normals, in this case) in order to avoid distortions in the final
result.

4.4 Fitting Vertical Planes

Once we have found the k clases C' = {c¢y, ¢z, ..., ¢, } associated to the types of
wall appearing in the scene, each ¢; contains a set of points {p]} with similar
normals. Next, we proceed to divide these sets in different vertical planes.
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Fig. 3. Classification example using EM algorithm. 2D point cloud for a given scene
and their normals (left). Directional histogram and final kernels (center). Final Kernels
distributions (right).

Fig. 4. Initial classification of the scene in Figure 2] Normals (left) and final position
of the 4 kernels. The prior probabilities are 0.0, 0.42, 0.0 and 0.58 respectively.

Given two points p/ and pi of class ¢; we consider that they belong to the
same plane when the distance between them in the X Z plane is below a given
threshold \: ||pZ — pl|l,. < A. Given this binary relation we build a graph
G, (V, A) whose vertices are associated to points in the class and the edges are
associated to pairs of vertices that satisfy the previous binary relation. Then we
calculate the connected components of this graph which represent the vertical
planes.

Once we have computed the connected components we must estimate the
parameters of the vertical planes and their bounds. We consider the set of points
with their normals {(p1,n1), (p2,n2), ..., (pi, )} that define a given plane .
We take as point and normal of the plane the centroid and the average normal,
respectively: ¥ = (p,m). The plane’s bounds are obtained by computing the
orthogonal plane ¢+ = (p,7+), and these bounds are determined by the most
distant points from this orthogonal plane (see Figure [{l).

Finally, to consider a plane valid, is necessary to verify that it is sufficiently
long and it contains enough points.

Once we have computed the vertical planes in 2D, we must to apply their
height in 3D, using the floor and ceiling heights (see Figure [@). In the other
hand, the vertical planes bounds (floor and ceiling) are calculated using the
bounding-box of the vertical planes set.
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Fig. 6. Planes detected from the example of the figure Bl Vertical planes in 2D (left)
and corresponding 3D planes with horizontal planes also. The algorithm detects 8
vertical planes.

5 Plane Texturization

Once we have found the horizontal and vertical planes, we must texturize them
using the appearance information of the observations (reference images).

Each plane defines a rectangular region of the space which can be paramet-
rically crossed in two directions, horizontal («) and vertical (). Each 3D point
pag of the plane, can be observed by anyone of the ¢ observations {v1,va, ..., v},
which we know its respective poses {1, 2, ..., @t}

Using the fundamental matrix of the camera, we project the point on each
image. Then, we consult the pixel color in each image, obtaining a set of color
candidates for this point {c1,co,...,c;}. We must reject the points of this set
that are not visible (because there is a vertical plane between the projection and
the 3D point). The final color of the point is calculated like closest to the average
of the set: argmin,, |¢; — ¢|.

The method is able to obtain a quite realistic texture. Nevertheless, an inher-
ent problem resides in the objects in the scene that do not adjust to any plane.
We have observed a smooth effect in this objects when they are captured from
different points of view (see experiments section)
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6 Experiments and Validation

In this section, we present a complete experiment in which we have estimated
the planes in a real scene. The scene is composed by 68 observations, along an
indoor environment located in the facilities of our department. The original point
cloud present 2.025.666 points in 3D (Figure [ left).

Fig. 7. Original point cloud of the experiment (left). Points and normals after hori-
zontal planes removal (top right). Vertical planes detected (Bottom right).

Using the proposed algorithm, we obtain 11 vertical planes (Figure [l Bottom
right). Its corresponding textures, as well as those of ceiling and ground, have
been stored in different images. The complete scene (geometric information of
the planes and its corresponding textures) occupies 980 Kb of disk space. Com-
paratively, the original point cloud mentioned previously occupies 31.652 Kb of
disk space.

In Figure Blwe show several 3D views of the textured model.

Fig. 8. Several 3D views of the final 3D scene.
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7 Conclusions and Future Work

In this work, we present an algorithm to estimate the principal 3D planes of a
scene composed by a set of stereo observations. We have proposed a two-step
point classifier based on the normal and the relative positions of the points.
Finally, we present an algorithm to estimate the texture of each plane using
appearance information of the observations.

We are currently investigating in the construction of non-plane primitives
from these planes. Our initial idea is, after estimating planes, we model each
one with a free approximation surface. Using this technique, we can obtain more
realistic scenes. On the other hand, we are interested in detecting other basic
primitives like cylinders and spheres.
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