Abstract
In this paper we propose a method for transforming a 3D map of the environment, composed by a cloud of millions of points, into a compact representation in terms of basic geometric primitives, 3D planes in this case. These planes, with their texture, yield a very useful representation in robot navigation tasks like localization and motion control. Our method estimates the main planes in the environment (walls, floor and ceiling) using point classification, based on the orientation of their normal and its relative position. Once we have inferred the 3D planes we map their textures using the appearance information of the observations, obtaining a realistic model of the scene.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Thrun, S., et al.: Probabilistic Algorithms and the interactive museum tour-guide robot Minerva. International Journal of Robotics Research 19(11) (November 2000)
Dieter, F., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robotics and Automation Magazine (1997)
Moravec, H.P.: Robot spatial perception by stereoscopic vision and 3D evidence grids. TR The Robotics Institute Carnegie Mellon University. Pittsburgh, Pennsylvania (1996)
Se, S., Lowe, D., Little, J.: Vision-based mobile robot localization and mapping using scale-invariant features. In: Proc. of IEEE International Conference on Robotics and Automation, Seoul, Korea (May 2001)
Iocchi, L., Konolige, K., Bajracharya, M.: Visually realistic mapping of planar environment with stereo. In: Seventh International Symposium on Experimental Robotics (ISER 2000), Hawaii (2000)
Liu, Y., Emery, R., Chakrabarti, D., Burgard, W., Thrun, S.: Using EM to learn 3D models of indoor enviroments with mobile robots. In: Eighteenth International Conference on Machine Learning, Williams College (June 2001)
Dempster, A., Laird, A., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B 39, 1–38 (1977)
Stamos, I., Leordeanu, M.: Automated Feature-Based Range Registration of Urban Scenes of Large Scale. In: IEEE International Conference of Computer Vision and Pattern Recognition, Madison, WI, vol. II, pp. 555–561 (2003)
Sáez, J.M., Escolano, F.: Monte Carlo Localization in 3D Maps Using Stereo Vision. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 913–922. Springer, Heidelberg (2002)
Sáez, J.M., Peñalver, A., Escolano, F.: Estimación de las acciones de un robot utilizando visión estéreo. In: IV Workshop de Agentes Físicos (WAF 2003), Alicante (April 2003)
Redner, R.A., Walker, H.F.: Mixture Densities, Maximum Likelihood, and the EM Algorithm. SIAM Review 26(2), 195–239 (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sáez, J.M., Peñalver, A., Escolano, F. (2003). Compact Mapping in Plane-Parallel Environments Using Stereo Vision. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds) Progress in Pattern Recognition, Speech and Image Analysis. CIARP 2003. Lecture Notes in Computer Science, vol 2905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24586-5_81
Download citation
DOI: https://doi.org/10.1007/978-3-540-24586-5_81
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20590-6
Online ISBN: 978-3-540-24586-5
eBook Packages: Springer Book Archive