Abstract
Let G be an embedded planar graph whose edges may be curves. For two arbitrary points of G, we can compare the length of the shortest path in G connecting them against their Euclidean distance. The maximum of all these ratios is called the geometric dilation of G. Given a finite point set, we would like to know the smallest possible dilation of any graph that contains the given points. In this paper we prove that a dilation of 1.678 is always sufficient, and that π/2 = 1.570... is sometimes necessary in order to accommodate a finite set of points.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, P., Klein, R., Knauer, C., Sharir, M.: Computing the detour of polygonal curves. Technical Report B 02-03, FU Berlin (January 2002)
Aichholzer, O., Aurenhammer, F., Icking, C., Klein, R., Langetepe, E., Rote, G.: Generalized self-approaching curves. Discrete Appl. Math. 109, 3–24 (2001)
Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded degree and low weight. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 234–246. Springer, Heidelberg (2001)
Chen, D.Z., Das, G., Smid, M.: Lower bounds for computing geometric spanners and approximate shortest paths. Discrete Appl. Math. 110, 151–167 (2001)
Ebbers-Baumann, A., Klein, R., Langetepe, E., Lingas, A.: A fast algorithm for approximating the detour of a polygonal chain. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 321–332. Springer, Heidelberg (2001)
Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 425–461. Elsevier, Amsterdam (1999)
Grüne, A.: Umwege in Polygonen. Master’s thesis, Institut für Informatik I, Universit ät Bonn (2002)
Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.: Approximate distance oracles revisited. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 357–368. Springer, Heidelberg (2002)
Icking, C., Klein, R., Langetepe, E.: Self-approaching curves. Math. Proc. Camb. Phil. Soc. 125, 441–453 (1999)
Kato, R., Imai, K., Asano, T.: An improved algorithm for the minimum manhattan network problem. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 344–356. Springer, Heidelberg (2002)
Langerman, S., Morin, P., Soss, M.: Computing the maximum detour and spanning ratio of planar chains, trees and cycles. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 250–261. Springer, Heidelberg (2002)
Narasimhan, G., Smid, M.: Approximating the stretch factor of Euclidean graphs. SIAM J. Comput. 30, 978–989 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ebbers-Baumann, A., Grüne, A., Klein, R. (2003). On the Geometric Dilation of Finite Point Sets. In: Ibaraki, T., Katoh, N., Ono, H. (eds) Algorithms and Computation. ISAAC 2003. Lecture Notes in Computer Science, vol 2906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24587-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-540-24587-2_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20695-8
Online ISBN: 978-3-540-24587-2
eBook Packages: Springer Book Archive