Skip to main content

A Faster Algorithm for Two-Variable Integer Programming

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2906))

Abstract

We show that a 2-variable integer program, defined by m constraints involving coefficients with at most ϕ bits can be solved with O(m + ϕ) arithmetic operations on rational numbers of size O(ϕ).

This result closes the gap between the running time of two-variable integer programming with the sum of the running times of the Euclidean algorithm on ϕ-bit integers and the problem of checking feasibility of an integer point for m constraints.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  2. Clarkson, K.L.: Las vegas algorithms for linear and integer programming when the dimension is small. Journal of the Association for Computing Machinery 42, 488–499 (1995)

    MATH  MathSciNet  Google Scholar 

  3. Eisenbrand, F.: Short vectors of planar lattices via continued fractions. Information Processing Letters 79(3), 121–126 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Eisenbrand, F.: Fast integer programming in fixed dimension. Technical Report MPI-I-2003-NWG2-002, Max-Planck-Institut für Informatik, Saarbrücken, Germany (2003) (to appear in the Proceedings of ESA 2003)

    Google Scholar 

  5. Eisenbrand, F., Rote, G.: Fast 2-variable integer programming. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 78–89. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Feit, S.D.: A fast algorithm for the two-variable integer programming problem. Journal of the Association for Computing Machinery 31(1), 99–113 (1984)

    MATH  MathSciNet  Google Scholar 

  7. Gauß, C.F.: Disquisitiones arithmeticae. Gerh. Fleischer Iun. (1801)

    Google Scholar 

  8. Hirschberg, D.S., Wong, C.K.: A polynomial algorithm for the knapsack problem in two variables. Journal of the Association for Computing Machinery 23(1), 147–154 (1976)

    MATH  MathSciNet  Google Scholar 

  9. Kanamaru, N., Nishizeki, T., Asano, T.: Efficient enumeration of grid points in a convex polygon and its application to integer programming. International Journal of Computational Geometry & Applications 4(1), 69–85 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kannan, R.: A polynomial algorithm for the two-variable integer programming problem. Journal of the Association for Computing Machinery 27(1), 118–122 (1980)

    MATH  MathSciNet  Google Scholar 

  11. Kannan, R., Lovász, L.: Covering minima and lattice-point-free convex bodies. Annals of Mathematics 128, 577–602 (1988)

    Article  MathSciNet  Google Scholar 

  12. Khintchine, A.Y.: Continued Fractions. Noordhoff, Groningen (1963)

    Google Scholar 

  13. Knuth, D.: The art of computer programming, vol. 2. Addison-Wesley, Reading (1969)

    MATH  Google Scholar 

  14. Lagarias, J.C.: Worst-case complexity bounds for algorithms in the theory of integral quadratic forms. Journal of Algorithms 1, 142–186 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lenstra, H.W.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8(4), 538–548 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Megiddo, N.: Linear programming in linear time when the dimension is fixed. Journal of the Association for Computing Machinery 31, 114–127 (1984)

    MATH  MathSciNet  Google Scholar 

  17. Scarf, H.E.: Production sets with indivisibilities. Part I: generalities. Econometrica 49, 1–32 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Scarf, H.E.: Production sets with indivisibilities. Part II: The case of two activities. Econometrica 49, 395–423 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schönhage, A.: Fast reduction and composition of binary quadratic forms. In: International Symposium on Symbolic and Algebraic Computation, ISSAC 1991, pp. 128–133. ACM Press, New York (1991)

    Chapter  Google Scholar 

  20. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley, Chichester (1986)

    MATH  Google Scholar 

  21. Zamanskij, L.Y., Cherkasskij, V.D.: A formula for determining the number of integral points on a straight line and its application. Ehkon. Mat. Metody 20, 1132–1138 (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eisenbrand, F., Laue, S. (2003). A Faster Algorithm for Two-Variable Integer Programming. In: Ibaraki, T., Katoh, N., Ono, H. (eds) Algorithms and Computation. ISAAC 2003. Lecture Notes in Computer Science, vol 2906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24587-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24587-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20695-8

  • Online ISBN: 978-3-540-24587-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics