Skip to main content

An Optimal Parallel Algorithm for c-Vertex-Ranking of Trees

  • Conference paper
Algorithms and Computation (ISAAC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2906))

Included in the following conference series:

  • 1245 Accesses

Abstract

For a positive integer c, a c-vertex-ranking of a graph G = (V, E) is a labeling of the vertices of G with integers such that, for any label i, deletion of all vertices with labels > i leaves connected components, each having at most c vertices with label i. The c-vertex-ranking problem is to find a c-vertex-ranking of a given graph using the minimum number of ranks. In this paper we give an optimal parallel algorithm for solving the c-vertex-ranking problem on trees that takes O(log2 n) parallel time using linear number of operations on the EREW PRAM model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abrahamson, K., Dadoun, N., Kirkpatrick, D.G., Przytycka, T.: A simple parallel tree contraction algorithm. Journal of Algorithms 10, 287–302 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bodlaender, H., Deogun, J.S., Jansen, K., Kloks, T., Müller, H.H., Tuza, Z.: Rankings of graphs. SIAM Journal of Discrete Math. 21, 168–181 (1998)

    Article  Google Scholar 

  3. de la Torre, P., Greenlaw, R., Przytycka, T.M.: Optimal tree ranking is in NC. Parallel Processing Letters 2, 31–41 (1992)

    Article  Google Scholar 

  4. Iyer, A.V., Ratliff, H.D., Vijayan, G.: Optimal vertex ranking of trees. Information Processing Letters 28, 225–229 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Já, J.J.: An Introduction to Parallel Algorithms. Addison-Wesley, Reading (1992)

    Google Scholar 

  6. Kashem, M.A., Zhou, X., Nishizeki, T.: Algorithms for generalized vertexrankings of partial k-trees. Theoretical Computer Science 240, 407–427 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Pothen, A.: The complexity of optimal elimination trees, Technical Report CS-88-13, Pennsylvania State University, U.S.A (1988)

    Google Scholar 

  8. Schäffer, A.A.: Optimal vertex ranking of trees in linear time. Information Processing Letters 33, 91–99 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Zhou, X., Nagai, N., Nishizeki, T.: Generalized vertex-rankings of trees. Information Processing Letters 56, 321–328 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kashem, M.A., Rahman, M.Z. (2003). An Optimal Parallel Algorithm for c-Vertex-Ranking of Trees. In: Ibaraki, T., Katoh, N., Ono, H. (eds) Algorithms and Computation. ISAAC 2003. Lecture Notes in Computer Science, vol 2906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24587-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24587-2_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20695-8

  • Online ISBN: 978-3-540-24587-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics