Abstract
Given an edge-weighted transportation network G and a list of transportation requests L, the stacker crane problem is to find a minimum-cost tour for a server along the edges of G that serves all requests. The server has capacity one, and starts and stops at the same vertex. In this paper, we consider the case that the transportation network G is a tree, and that the requests are chosen randomly according to a certain class of probability distributions. We show that a polynomial time algorithm by Frederickson and Guan [11], which guarantees a 4/3-approximation in the worst case, on almost all inputs finds a minimum-cost tour, along with a certificate of the optimality of its output.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ascheuer, N., Krumke, S.O., Rambau, J.: Online dial-a-ride problems: Minimizing the completion time. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 639–650. Springer, Heidelberg (2000)
Atallah, M.J., Kosaraju, S.R.: Efficient solutions to some transportation problems with applications to minimizing robot arm travel. SIAM Journal on Computing 17, 849–869 (1988)
Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Springer, Heidelberg (1999)
Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for the on-line traveling salesman. Algorithmica 29, 560–581 (2001)
Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. In: Proc 35th SToC (2003)
Boppana, R.B.: Eigenvalues and graph bisection: An average case analysis. In: Proceedings of 28th FoCS (1987)
Burkard, R., Fruhwirth, B., Rote, G.: Vehicle routing in an automated warehouse: Analysis and optimization. Annals of Operations Research 57, 29–44 (1995)
Charikar, M., Raghavachari, B.: The finite capacity dial-A-ride problem. In: Proceedings of the 39th FoCS (1998)
Coja-Oglan, A., Krumke, S.O., Nierhoff, T.: Scheduling a server on a caterpillar network - a probabilistic analysis. In: Proceedings of the 6th Workshop on Models and Algorithms for Planning and Scheduling Problems (2003)
Feuerstein, E., Stougie, L.: On-line single server dial-a-ride problems. Theoretical Computer Science (to appear)
Frederickson, G.N., Guan, D.J.: Nonpreemptive ensemble motion planning on a tree. Journal of Algorithms 15, 29–60 (1993)
Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. SIAM Journal on Computing 7, 178–193 (1978)
Gröpl, C., Hougardy, S., Nierhoff, T., Prömel, H.J.: Approximation algorithms for the Steiner tree problem in graphs. In: Cheng, X., Du, D.Z. (eds.) Steiner Trees in Industry, pp. 235–279. Kluwer Academic Publishers, Dordrecht (2001)
Guan, D.J.: Routing a vehicle of capacity greater than one. Discrete Applied Mathematics 81, 41–57 (1998)
Hauptmeier, D., Krumke, S.O., Rambau, J., Wirth, H.C.: Euler is standing in line. Discrete Applied Mathematics 113, 87–107 (2001)
Janson, S., Luczak, T., Ruciński, A.: Random Graphs. John Wiley & Sons, Chichester (2000)
Johnson, D.S., Papadimitriou, C.H.: Performance guarantees for heuristics. In: Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R., Shmoys, D.B. (eds.) The Travelling Salesman Problem, pp. 145–180. Wiley, Chichester (1985)
Knuth, D.E.: The art of computer programming. Sorting and searching, vol. 3. Addison-Wesley, Reading (1968)
Kreuter, B., Nierhoff, T.: Greedily approximating the r-independent set and kcenter problems on random instances. In: Rolim, J.D.P. (ed.) RANDOM 1997. LNCS, vol. 1269, pp. 43–53. Springer, Heidelberg (1997)
Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman problem. In: Proc. of the 32nd SToC (2000)
Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Coja-Oghlan, A., Krumke, S.O., Nierhoff, T. (2003). A Heuristic for the Stacker Crane Problem on Trees Which Is Almost Surely Exact. In: Ibaraki, T., Katoh, N., Ono, H. (eds) Algorithms and Computation. ISAAC 2003. Lecture Notes in Computer Science, vol 2906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24587-2_62
Download citation
DOI: https://doi.org/10.1007/978-3-540-24587-2_62
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20695-8
Online ISBN: 978-3-540-24587-2
eBook Packages: Springer Book Archive