Skip to main content

A Heuristic for the Stacker Crane Problem on Trees Which Is Almost Surely Exact

  • Conference paper
Algorithms and Computation (ISAAC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2906))

Included in the following conference series:

  • 1295 Accesses

Abstract

Given an edge-weighted transportation network G and a list of transportation requests L, the stacker crane problem is to find a minimum-cost tour for a server along the edges of G that serves all requests. The server has capacity one, and starts and stops at the same vertex. In this paper, we consider the case that the transportation network G is a tree, and that the requests are chosen randomly according to a certain class of probability distributions. We show that a polynomial time algorithm by Frederickson and Guan [11], which guarantees a 4/3-approximation in the worst case, on almost all inputs finds a minimum-cost tour, along with a certificate of the optimality of its output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ascheuer, N., Krumke, S.O., Rambau, J.: Online dial-a-ride problems: Minimizing the completion time. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 639–650. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Atallah, M.J., Kosaraju, S.R.: Efficient solutions to some transportation problems with applications to minimizing robot arm travel. SIAM Journal on Computing 17, 849–869 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  4. Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for the on-line traveling salesman. Algorithmica 29, 560–581 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. In: Proc 35th SToC (2003)

    Google Scholar 

  6. Boppana, R.B.: Eigenvalues and graph bisection: An average case analysis. In: Proceedings of 28th FoCS (1987)

    Google Scholar 

  7. Burkard, R., Fruhwirth, B., Rote, G.: Vehicle routing in an automated warehouse: Analysis and optimization. Annals of Operations Research 57, 29–44 (1995)

    Article  MATH  Google Scholar 

  8. Charikar, M., Raghavachari, B.: The finite capacity dial-A-ride problem. In: Proceedings of the 39th FoCS (1998)

    Google Scholar 

  9. Coja-Oglan, A., Krumke, S.O., Nierhoff, T.: Scheduling a server on a caterpillar network - a probabilistic analysis. In: Proceedings of the 6th Workshop on Models and Algorithms for Planning and Scheduling Problems (2003)

    Google Scholar 

  10. Feuerstein, E., Stougie, L.: On-line single server dial-a-ride problems. Theoretical Computer Science (to appear)

    Google Scholar 

  11. Frederickson, G.N., Guan, D.J.: Nonpreemptive ensemble motion planning on a tree. Journal of Algorithms 15, 29–60 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. SIAM Journal on Computing 7, 178–193 (1978)

    Article  MathSciNet  Google Scholar 

  13. Gröpl, C., Hougardy, S., Nierhoff, T., Prömel, H.J.: Approximation algorithms for the Steiner tree problem in graphs. In: Cheng, X., Du, D.Z. (eds.) Steiner Trees in Industry, pp. 235–279. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  14. Guan, D.J.: Routing a vehicle of capacity greater than one. Discrete Applied Mathematics 81, 41–57 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hauptmeier, D., Krumke, S.O., Rambau, J., Wirth, H.C.: Euler is standing in line. Discrete Applied Mathematics 113, 87–107 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Janson, S., Luczak, T., Ruciński, A.: Random Graphs. John Wiley & Sons, Chichester (2000)

    MATH  Google Scholar 

  17. Johnson, D.S., Papadimitriou, C.H.: Performance guarantees for heuristics. In: Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R., Shmoys, D.B. (eds.) The Travelling Salesman Problem, pp. 145–180. Wiley, Chichester (1985)

    Google Scholar 

  18. Knuth, D.E.: The art of computer programming. Sorting and searching, vol. 3. Addison-Wesley, Reading (1968)

    MATH  Google Scholar 

  19. Kreuter, B., Nierhoff, T.: Greedily approximating the r-independent set and kcenter problems on random instances. In: Rolim, J.D.P. (ed.) RANDOM 1997. LNCS, vol. 1269, pp. 43–53. Springer, Heidelberg (1997)

    Google Scholar 

  20. Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman problem. In: Proc. of the 32nd SToC (2000)

    Google Scholar 

  21. Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coja-Oghlan, A., Krumke, S.O., Nierhoff, T. (2003). A Heuristic for the Stacker Crane Problem on Trees Which Is Almost Surely Exact. In: Ibaraki, T., Katoh, N., Ono, H. (eds) Algorithms and Computation. ISAAC 2003. Lecture Notes in Computer Science, vol 2906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24587-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24587-2_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20695-8

  • Online ISBN: 978-3-540-24587-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics