Skip to main content

Modeling of Narrow-Width SOI Devices: The Role of Quantum Mechanical Narrow Channel Effects on Device Performance

  • Conference paper
Large-Scale Scientific Computing (LSSC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2907))

Included in the following conference series:

Abstract

The impact of quantum mechanical space-quantization effects on the operation of a narrow-width SOI device structure has been investigated. The presence of a two-dimensional carrier confinement(both vertical and along the width direction) gives rise to larger average displacement of the carriers from the interface and lower sheet electron density in the channel region. This, in turn, results not only in a significant increase in the threshold voltage but also in pronounced channel width dependency of the drain current. In these simulations we have used classical 3D Monte Carlo particle-based simulations. Quantum mechanical space-quantization effects have been accounted for via an effective potential scheme that has been quite successful in describing bandgap widening effect and charge set back from the interface in conventional MOSFET devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akis, R., Milicic, S., Ferry, D.K., Vasileska, D.: An effective potential method for including quantum effects into the simulation of ultra-short and ultra-narrow channel MOSFETs. In: Proceedings of the 4th International Conference on Modeling and Simulation of Microsystems, Hilton Head Island, SC, March 19-21, pp. 550–553 (2001)

    Google Scholar 

  2. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. I. Phys. Rev. 85, 166 (1952)

    Article  MathSciNet  Google Scholar 

  3. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. II. Phys. Rev. 85, 180 (1952)

    Article  MathSciNet  Google Scholar 

  4. de Broglie, L.: Sur la possibilité de relier les phénomènes d’interference et de diffraction á la théorie des quanta de luminère. C. R. Acad. Sci. Paris 183, 447 (1926)

    MATH  Google Scholar 

  5. de Broglie, L.: La structure atomique de la matière et du rayonnement et la Mécanique ondulatoire. C. R. Acad. Sci. Paris 184, 273 (1927)

    MATH  Google Scholar 

  6. Dewdney, C., Hiley, B.J.: A quantum potential description of one-dimensional time-dependent scattering from square barriers and square wells. Found. Phys. 12, 27 (1982)

    Article  Google Scholar 

  7. Ferry, D.K., Akis, R., Vasileska, D.: Quantum Effects in MOSFETs: Use of an Effective Potential in 3D Monte Carlo Simulation of Ultra-Short Channel Devices, IEDM Tech. Dig, pp. 287–290. IEEE Press, New York (2000)

    Google Scholar 

  8. He, J., Xi, X., Chan, M., Cao, K., Hu, C., Li, Y., Zhang, X., Huang, R., Wang, Y.: Normalized mutual integral difference method to extract threshold voltage of MOSFETs. IEEE Electron Dev. Lett. 23, 428–430 (2002)

    Article  Google Scholar 

  9. Herring, C., Vogt, E.: Transport and Deformation-Potential Theory for Many- Valley Semiconductors with Anisotropic Scattering. Phys. Rev. 101, 944 (1956)

    Article  MATH  Google Scholar 

  10. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. McGraw-Hill, Maidenhead (1981)

    Google Scholar 

  11. Laux, S.E.: On particle-mesh coupling in Monte Carlo semiconductor device simultion. IEEE Trans. CAD Integr. Circ. Syst. 15, 1266 (1996)

    Article  Google Scholar 

  12. Madelung, E.: Quantatheorie in hydrodynamischer form. Z. Phys. 40, 322 (1926)

    Google Scholar 

  13. Majima, H., Ishikuro, H., Hiramoto, T.: Experimental evidence for quantum mechanical narrow channel effect in ultra-narrow MOSFET’s. IEEE Electron Dev. Lett. 21, 396 (2000)

    Article  Google Scholar 

  14. Shahidi, G.G.: SOI Technology for the GHz era. IBM J. Res. & Dev. 46, 121 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahmed, S.S., Vasileska, D. (2004). Modeling of Narrow-Width SOI Devices: The Role of Quantum Mechanical Narrow Channel Effects on Device Performance. In: Lirkov, I., Margenov, S., Waśniewski, J., Yalamov, P. (eds) Large-Scale Scientific Computing. LSSC 2003. Lecture Notes in Computer Science, vol 2907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24588-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24588-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21090-0

  • Online ISBN: 978-3-540-24588-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics