Abstract
An numerical approach for numerical approximation of trajectories of a smooth affine control system is proposed under suitable assumptions. This approach is based on expansion of solutions of systems of ordinary differential equations (ODE) by Volterra series and allows to estimate the distance between the obtained approximation and the true trajectory.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrachev, A., Gamkrelidze, R.: The exponential representation of flows and the chronological calculus. Math. USSR Sbornik 107, 467–532 (1978)
Bochev, P., Markov, S.: A self-validating method for matrix exponential. Computing 43, 59–72 (1989)
Clarke, F., Ledyaev, Y., Stern, R., Wolenski, P.: Nonsmooth analysis and control theory. Graduate text ion Mathematics 178, Springer (1998)
Dontchev, A., Lempio, F.: Difference methods for differential inclusions. SIAM J. Review 34, 263–294 (1992)
Grüne, L., Kloeden, P.: Higher order numerical schemes for affinely controlled nonlinear systems. Numer. Math. 89, 669–690 (2001)
Grüne, L., Kloeden, P.E.: Numerical schemes of higher order for a class of nonlinear control systems. In: Dimov, I.T., Lirkov, I., Margenov, S., Zlatev, Z. (eds.) NMA 2002. LNCS, vol. 2542, pp. 213–220. Springer, Heidelberg (2003)
Isidori, A.: Nonlinear control systems. An introduction. Springer, Heidelberg (1995)
Kawski, M.: High-order Maximal Principle (2003) (preprint)
Krastanov, M., Kirov, N.: Dynamic Interactive System for Analysis of Linear Differential Inclusions. In: Kurzhanski, A., Veliov, V. (eds.) Modeling techniques for uncertain systems, pp. 123–130. Birkhauser, Basel (1994)
Veliov, V.: Discrete approximations to integrals of multivalued inclusions. Compt. Rend. Acad. Bulg. Sci. 42, 51–54 (1989)
Veliov, V.: On the time discretization of control systems. SIAM J. Control Optim. 35, 1470–1486 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kirov, N., Krastanov, M. (2004). Higher Order Approximations of Affinely Controlled Nonlinear Systems. In: Lirkov, I., Margenov, S., Waśniewski, J., Yalamov, P. (eds) Large-Scale Scientific Computing. LSSC 2003. Lecture Notes in Computer Science, vol 2907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24588-9_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-24588-9_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21090-0
Online ISBN: 978-3-540-24588-9
eBook Packages: Springer Book Archive