Abstract
In many transport-chemistry models, a huge system ofODE’s of the advection-diffusion-reaction type has to be integrated in time. Typically, this is done with the help of operator splitting. Rosenbrock schemes combined with approximate matrix factorization (ROS-AMF) are an alternative to operator splitting which does not suffer from splitting errors. However, implementation of ROS-AMF schemes often requires serious changes in the code.
In this paper we test another classical second order splitting introduced by Strang in 1963, which, unlike the popular Strang splitting, seemed to be forgotten and rediscovered recently (partially due to its intrinsic parallellism). This splitting, called symmetrically weighted sequential (SWS) splitting, is simple and straightforward to apply, independent of the order of the operators and has an operator-level parallelism. In the experiments, the SWS scheme compares favorably to the Strang splitting, but is less accurate than ROS-AMF.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Botchev, M.A., Verwer, J.G.: A new approximate matrix factorization for implicit time integration in air pollution modeling. J. Comp. Appl. Mathematics (2003) (to appear)
Csomós, P., Faragó, I., Havasi, Á.: Weighted sequential splittings and their analysis. Comp. Math. Appl. (2003) (submitted to )
Dekker, K., Verwer, J.G.: Stability of Runge-Kutta methods for stiff non-linear differential equations. North-Holland/Elsevier Science Publishers (1984)
Lastdrager, B., Koren, B., Verwer, J.G.: Solution of time-dependent advectiondiffusion problems with the sparse-grid combination technique and a Rosenbrock solver. Comput. Methods Appl. Math. 1, 86–98 (2001)
Sandu, A., Verwer, J.G., Blom, J.G., Spee, E.J., Carmichael, G.R.: Benchmarking stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock solvers. Atm. Env. 31, 3459–3472 (1997)
Sportisse, B., Djouad, R.: Some aspects of multi-timescales issues for the numerical modeling of atmospheric chemistry. In: Chock, D.P., Carmichael, G.R. (eds.) Atmospheric Modeling. IMA volumes in Mathematics and its Applications, vol. 130, pp. 1–20. Springer, Heidelberg (2002)
Strang, G.: Accurate partial difference methods I: Linear Cauchy problems. Archive for Rational Mechanics and Analysis 12, 392–402 (1963)
Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)
The TM3 model home page. IMAU, Utrecht University, Utrecht, http://www.phys.uu.nl/~peters/TM3/TM3S.html
Verwer, J.G., Hundsdorfer, W.H., Blom, J.G.: Numerical time integration for air pollution models. Surveys on Mathematics for Industry 10, 107–174 (2002)
Zlatev, Z.: Computer Treatment of Large Air Pollution Models. Kluwer Academic Publisher, Dordrecht (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Botchev, M., Faragó, I., Havasi, Á. (2004). Testing Weighted Splitting Schemes on a One-Column Transport-Chemistry Model. In: Lirkov, I., Margenov, S., Waśniewski, J., Yalamov, P. (eds) Large-Scale Scientific Computing. LSSC 2003. Lecture Notes in Computer Science, vol 2907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24588-9_33
Download citation
DOI: https://doi.org/10.1007/978-3-540-24588-9_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21090-0
Online ISBN: 978-3-540-24588-9
eBook Packages: Springer Book Archive