Skip to main content

Parallel Solution of Very Large Sparse Systems of Linear Algebraic Equations

  • Conference paper
Large-Scale Scientific Computing (LSSC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2907))

Included in the following conference series:

  • 753 Accesses

Abstract

Systems of linear algebraic equations Ax = b occur very often when large-scale mathematical models are treated. The solution of these systems is as a rule the most time-consuming part of the computational work when large-scale mathematical models are handled on computers. Therefore, it is important to be able to solve such problems efficiently.

It is assumed that the systems Ax = b , which must be solved many times during the treatment of the models, are (i) very large (containing more than 106 equations) and (ii) general sparse. Moreover, it is also assumed that parallel computers with shared memory are available. An efficient algorithm for the solution of such large systems under the above assumptions is described. Numerical examples are given to demonstrate the ability of the algorithm to handle very large systems of linear algebraic equations.

The algorithm can be applied in the treatment of some large-scale air pollution models without using splitting procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrov, V., Sameh, A., Siddique, Y., Zlatev, Z.: Numerical integration of chemical ODE problems arising in air pollution models. Environmental Modelling and Assessment 2, 365–377 (1997)

    Article  Google Scholar 

  2. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorenson, D.: LAPACK: Users’ guide. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  3. Directive 2002/3EC of the European Parliament and of the Council of 12 February 2002 relating to ozone in ambient air. Official Journal of the European Communities, Vol. L 67, pp. 14–30 (February 2002)

    Google Scholar 

  4. Eirola, T., Nevanlinna, O.: Accelerating with rank-one updates. Lin. Alg. Appl. 121, 511–520 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Freund, R.W.: A transpose-free quasi-minimal residual algorithm for non- Hermitian linear systems. SIAM J. Sci. Stat. Comput. 14, 470–482 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gallivan, K., Hansen, P.C., Ostromsky, T., Zlatev, Z.: A locally optimized reordering algorithm and its application to a parallel sparse linear system solver. Computing 54, 39–67 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gallivan, K.A., Sameh, A.H., Zlatev, Z.: A parallel hybrid sparse linear system solver. Computing Systems in Engineering 1, 183–195 (1990)

    Article  Google Scholar 

  8. Havasi, A., Zlatev, Z.: Trends of Hungarian air pollution levels on a long timescale. Atmospheric Environment 36, 4145–4156 (2002)

    Article  Google Scholar 

  9. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 10, 36–52 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Vinsome, P.: ORTHOMIN, an iterative method for solving sparse sets of simultaneous linear equations. In: Proc. Fourth Sympos. on Reservoir Simulation, Society of Petr. Eng. of AIME (1976)

    Google Scholar 

  12. van der Vorst, H.A.: BI-CGSTAB: A fast and smoothly converging variant of BICG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)

    Article  MATH  Google Scholar 

  13. Vuik, C., van der Vorst, H.A.: A comparison of some GMRES-like methods. Lin. Alg. Appl. 160, 131–160 (1992)

    Article  MATH  Google Scholar 

  14. Yang, U.M., Gallivan, K.: A Family of Preconditioned Iterative Solvers for Sparse Linear Systems. Applied Numerical Mathematics 30, 155–173 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zlatev, Z.: On some pivotal strategies in Gaussian elimination by sparse technique. SIAM J. Numer. Anal. 17, 18–30 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zlatev, Z.: Use of iterative refinement in the solution of sparse linear systems. SIAM J. Numer. Anal. 19, 381–399 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zlatev, Z.: Computational methods for general sparse matrices. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  18. Zlatev, Z.: Computer treatment of large air pollution models. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  19. Zlatev, Z., Dimov, I., Ostromsky, T., Geernaert, G., Tzvetanov, I., Bastrup- Birk, A.: Calculating losses of crops in Denmark caused by high ozone levels. Environmental Modelling and Assessment 6, 35–55 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zlatev, Z. (2004). Parallel Solution of Very Large Sparse Systems of Linear Algebraic Equations. In: Lirkov, I., Margenov, S., Waśniewski, J., Yalamov, P. (eds) Large-Scale Scientific Computing. LSSC 2003. Lecture Notes in Computer Science, vol 2907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24588-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24588-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21090-0

  • Online ISBN: 978-3-540-24588-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics