Skip to main content

Generalized Nonstandard Numerical Methods for Nonlinear Advection-Diffusion-Reaction Equations

  • Conference paper
Large-Scale Scientific Computing (LSSC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2907))

Included in the following conference series:

  • 870 Accesses

Abstract

A time-splitting method for nonlinear advection-diffusion-reaction equations is formulated and analyzed. The nonlinear advection-reaction part of the problem is solved using a new generalized nonstandard method based on a Lagrangian formulation and a linearizing map. The diffusion part is handled with standard finite difference schemes. This approach leads to significant qualitative improvements in the behavior of the numerical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Celia, M.A., Russell, T.F., Herrera, I., Ewing, R.E.: An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation. Adv. Water Resour. 13(4), 187–206 (1990)

    Article  Google Scholar 

  2. Dawson, C.N., Wheeler, M.F.: Time-Splitting Methods for Advection-Diffusion- Reaction Equations Arising in Contaminant Transport. In: ICIAM 1991, Washington, DC, pp. 71–82. SIAM, Philadelphia (1992)

    Google Scholar 

  3. Douglas Jr., J., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. Healy, R.W., Russell, T.F.: A finite-volume Eulerian-Lagrangian localized adjoint method for solution of the advection-dispersion equation. Water Resour. Res. 29(7), 2399–2413 (1993)

    Article  Google Scholar 

  5. Kojouharov, H.V., Welfert, B.D.: A New Numerical Approach for the Solution of Scalar Nonlinear Advection-Reaction Equations. Internat. J. Appl. Sci. Comput. 8(2), 119–126 (2001)

    MathSciNet  Google Scholar 

  6. Kojouharov, H.V., Welfert, B.D.: Nonlinear Advection-Diffusion-Reaction Equations via Operator Splitting and Nonstandard Methods (in preparation)

    Google Scholar 

  7. Liu, B., Allen, M.B., Kojouharov, H., Chen, B.: Finite-element solution of reactiondiffusion equations with advection. Computational Methods in Water Resources Comput. Mech. XI 1, 3–12 (1996)

    Google Scholar 

  8. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kojouharov, H.V., Welfert, B.D. (2004). Generalized Nonstandard Numerical Methods for Nonlinear Advection-Diffusion-Reaction Equations. In: Lirkov, I., Margenov, S., Waśniewski, J., Yalamov, P. (eds) Large-Scale Scientific Computing. LSSC 2003. Lecture Notes in Computer Science, vol 2907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24588-9_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24588-9_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21090-0

  • Online ISBN: 978-3-540-24588-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics