Skip to main content

Two-Level Preconditioning of Crouzeix-Raviart Anisotropic FEM Systems

  • Conference paper
Large-Scale Scientific Computing (LSSC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2907))

Included in the following conference series:

  • 773 Accesses

Abstract

The studied large-scale linear problems arise from Crouzeix-Raviart non-conforming FEM approximation of second order elliptic boundary value problems. A two-level preconditioner for the case of coefficient anisotropy is analyzed. A special attention is given to the potential of the method for a parallel implementation.

AMS Subject Classifications: 65F10, 65N30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arbogast, T., Chen, Z.: On the implementation of mixed methods as nonconforming methods for second order elliptic problems. Math. Comp. 64, 943–972 (1995)

    MATH  MathSciNet  Google Scholar 

  2. Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO, Model. Math. Anal. Numer. 19, 7–32 (1985)

    MATH  MathSciNet  Google Scholar 

  3. Blaheta, R.: Displacement decomposition — incomplete factorization preconditioning techniques for linear elasticity problems. Numer. Lin. Alg. Appl. 1, 107–126 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bencheva, G., Margenov, S.: Performance analysis of parallel MIC(0) preconditioning of rotated bilinear nonconforming FEM systems. Mathematica Balkanica 18 (2004) (to appear)

    Google Scholar 

  5. Chen, Z.: Analysis of mixed methods using conforming and nonconforming finite element methods. RAIRO, Math. Model. Numer. Anal. 27, 9–34 (1993)

    MATH  Google Scholar 

  6. Chen, Z.: Equivalence between multigrid algorithms for mixed and nonconformning methods for second order elliptic problems. East-West J. Numer. Math. 4, 1–33 (1996)

    MATH  MathSciNet  Google Scholar 

  7. Chen, Z., Ewing, R.E., Kuznetsov, Y.A., Lazarov, R.D., Maliassov, S.: Multilevel preconditioners for mixed methods for second order elliptic problems. Numer. Lin. Alg. with Appl. 3(5), 427–453 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, Z., Ewing, R.E., Lazarov, R.D.: Domain decomposition algorithms for mixed methods for second order elliptic problems. Math. Comp. 65(214), 467–490 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gustafsson, I.: Modified incomplete Cholesky (MIC) factorization. In: Evans, D.J. (ed.) Preconditioning Methods; Theory and Applications, pp. 265–293. Gordon and Breach, New York (1984)

    Google Scholar 

  10. Gustafsson, I., Lindskog, G.: On parallel solution of linear elasticity problems: Part I: Theory. Numer. Lin. Alg. Appl. 5, 123–139 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Langer, U., Reitzinger, S., Schicho, J.: Symbolic methods for the element preconditioning technique. Johanes Kepler University of Linz, SFB-Report No. 02-03 (2002)

    Google Scholar 

  12. Lazarov, R.D., Margenov, S.D.: On a two-level parallel MIC(0) preconditioning of Crouzeix-Raviart non-conforming FEM systems. In: Dimov, I.T., Lirkov, I., Margenov, S., Zlatev, Z. (eds.) NMA 2002. LNCS, vol. 2542, pp. 192–201. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Saad, Y., Schultz, M.H.: Data Communication in Parallel Architectures. Parallel Comput. 11, 131–150 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bencheva, G., Georgiev, I., Margenov, S. (2004). Two-Level Preconditioning of Crouzeix-Raviart Anisotropic FEM Systems. In: Lirkov, I., Margenov, S., Waśniewski, J., Yalamov, P. (eds) Large-Scale Scientific Computing. LSSC 2003. Lecture Notes in Computer Science, vol 2907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24588-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24588-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21090-0

  • Online ISBN: 978-3-540-24588-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics