Abstract
The studied large-scale linear problems arise from Crouzeix-Raviart non-conforming FEM approximation of second order elliptic boundary value problems. A two-level preconditioner for the case of coefficient anisotropy is analyzed. A special attention is given to the potential of the method for a parallel implementation.
AMS Subject Classifications: 65F10, 65N30.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arbogast, T., Chen, Z.: On the implementation of mixed methods as nonconforming methods for second order elliptic problems. Math. Comp. 64, 943–972 (1995)
Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO, Model. Math. Anal. Numer. 19, 7–32 (1985)
Blaheta, R.: Displacement decomposition — incomplete factorization preconditioning techniques for linear elasticity problems. Numer. Lin. Alg. Appl. 1, 107–126 (1994)
Bencheva, G., Margenov, S.: Performance analysis of parallel MIC(0) preconditioning of rotated bilinear nonconforming FEM systems. Mathematica Balkanica 18 (2004) (to appear)
Chen, Z.: Analysis of mixed methods using conforming and nonconforming finite element methods. RAIRO, Math. Model. Numer. Anal. 27, 9–34 (1993)
Chen, Z.: Equivalence between multigrid algorithms for mixed and nonconformning methods for second order elliptic problems. East-West J. Numer. Math. 4, 1–33 (1996)
Chen, Z., Ewing, R.E., Kuznetsov, Y.A., Lazarov, R.D., Maliassov, S.: Multilevel preconditioners for mixed methods for second order elliptic problems. Numer. Lin. Alg. with Appl. 3(5), 427–453 (1996)
Chen, Z., Ewing, R.E., Lazarov, R.D.: Domain decomposition algorithms for mixed methods for second order elliptic problems. Math. Comp. 65(214), 467–490 (1996)
Gustafsson, I.: Modified incomplete Cholesky (MIC) factorization. In: Evans, D.J. (ed.) Preconditioning Methods; Theory and Applications, pp. 265–293. Gordon and Breach, New York (1984)
Gustafsson, I., Lindskog, G.: On parallel solution of linear elasticity problems: Part I: Theory. Numer. Lin. Alg. Appl. 5, 123–139 (1998)
Langer, U., Reitzinger, S., Schicho, J.: Symbolic methods for the element preconditioning technique. Johanes Kepler University of Linz, SFB-Report No. 02-03 (2002)
Lazarov, R.D., Margenov, S.D.: On a two-level parallel MIC(0) preconditioning of Crouzeix-Raviart non-conforming FEM systems. In: Dimov, I.T., Lirkov, I., Margenov, S., Zlatev, Z. (eds.) NMA 2002. LNCS, vol. 2542, pp. 192–201. Springer, Heidelberg (2003)
Saad, Y., Schultz, M.H.: Data Communication in Parallel Architectures. Parallel Comput. 11, 131–150 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bencheva, G., Georgiev, I., Margenov, S. (2004). Two-Level Preconditioning of Crouzeix-Raviart Anisotropic FEM Systems. In: Lirkov, I., Margenov, S., Waśniewski, J., Yalamov, P. (eds) Large-Scale Scientific Computing. LSSC 2003. Lecture Notes in Computer Science, vol 2907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24588-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-24588-9_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21090-0
Online ISBN: 978-3-540-24588-9
eBook Packages: Springer Book Archive