Skip to main content

How to Whack Moles

  • Conference paper
Approximation and Online Algorithms (WAOA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2909))

Included in the following conference series:

Abstract

In the classical whack-a-mole game moles that pop up at certain locations must be whacked by means of a hammer before they go under ground again. The goal is to maximize the number of moles caught. This problem can be formulated as an online optimization problem: Requests (moles) appear over time at points in a metric space and must be served (whacked) by a server (hammer) before their deadlines (i.e., before they disappear). An online algorithm learns each request only at its release time and must base its decisions on incomplete information. We study the online whack-a-mole problem (wham) on the real line and on the uniform metric space. While on the line no deterministic algorithm can achieve a constant competitive ratio, we provide competitive algorithms for the uniform metric space. Our online investigations are complemented by complexity results for the offline problem.

Supported by the DFG Research Center ”Mathematics for key technologies” (FZT 86) in Berlin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ascheuer, N., Krumke, S.O., Rambau, J.: Online dial-a-ride problems: Minimizing the completion time. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 639–650. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for the on-line traveling salesman. Algorithmica 29(4), 560–581 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baruah, S., Haritsa, J., Sharma, N.: On-line scheduling to maximize task completions. The Journal of Combinatorial Mathematics and Combinatorial Computing 39, 65–78 (2001)

    MATH  MathSciNet  Google Scholar 

  4. Blom, M., Krumke, S.O., de Paepe, W.E., Stougie, L.: The online-TSP against fair adversaries. Informs Journal on Computing 13(2), 138–148 (2001)

    Article  MathSciNet  Google Scholar 

  5. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  6. de Paepe, W.E., Lenstra, J.K., Sgall, J., Sitters, R.A., Stougie, L.: Computeraided complexity classification of dial-a-ride problems. Informs Journal on Computing (2003) (to appear)

    Google Scholar 

  7. Feuerstein, E., Stougie, L.: On-line single server dial-a-ride problems. Theoretical Computer Science 268(1), 91–105 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability (A guide to the theory of NP-completeness). W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  9. Hauptmeier, D., Krumke, S.O., Rambau, J.: The online dial-a-ride problem under reasonable load. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 125–136. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Irani, S., Lu, X., Regan, A.: On-line algorithms for the dynamic traveling repair problem. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 517–524 (2002)

    Google Scholar 

  11. Kalyanasundaram, B., Pruhs, K.R.: Maximizing job completions online. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 235–246. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  13. Krumke, S.O., de Paepe, W.E., Poensgen, D., Stougie, L.: News from the online traveling repairman. Theoretical Computer Science 295, 279–294 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Krumke, S.O., Laura, L., Lipmann, M., Marchetti-Spaccamela, A., de Paepe, W.E., Poensgen, D., Stougie, L.: Non-abusiveness helps: An O(1)-competitive algorithm for minimizing the maximum flow time in the online traveling salesman problem. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 200–214. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Poensgen, D.: Facets of Online Optimization. Dissertation, Technische Universität Berlin, Berlin (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krumke, S.O., Megow, N., Vredeveld, T. (2004). How to Whack Moles. In: Solis-Oba, R., Jansen, K. (eds) Approximation and Online Algorithms. WAOA 2003. Lecture Notes in Computer Science, vol 2909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24592-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24592-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21079-5

  • Online ISBN: 978-3-540-24592-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics