Abstract
Motivated by the problem of allocating optical bandwidth in tree–shaped WDM networks, we study the fractional path coloring problem in trees. We consider the class of locally-symmetric sets of paths on binary trees and prove that any such set of paths has a fractional coloring of cost at most 1.367L, where L denotes the load of the set of paths. Using this result, we obtain a randomized algorithm that colors any locally-symmetric set of paths of load L on a binary tree (with reasonable restrictions on its depth) using at most 1.367L+o(L) colors, with high probability.
This work was partially funded by the European Union under IST FET Project ALCOM–FT, IST FET Project CRESCCO and RTN Project ARACNE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Auletta, V., Caragiannis, I., Kaklamanis, C., Persiano, P.: Randomized Path Coloring on Binary Trees. Theoretical Computer Science 289(1), 355–399 (2002)
Caragiannis, I., Ferreira, A., Kaklamanis, C., Perennes, S., Rivano, H.: Fractional Path Coloring with Applications to WDM Networks. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 732–743. Springer, Heidelberg (2001)
Caragiannis, I., Kaklamanis, C., Persiano, P.: Symmetric Communication in All– Optical Tree Networks. Parallel Processing Letters 10(4), 305–313 (2000)
Corteel, S., Gardy, D., Barth, D., Denise, A., Valencia-Pabon, M.: On the Complexity of Routing Permutations on Trees by Arc-Disjoint Paths. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 308–317. Springer, Heidelberg (2000)
Erlebach, T., Jansen, K.: The Complexity of Path Coloring and Call Scheduling. Theoretical Computer Science 255(1-2), 33–50 (2000)
Erlebach, T., Jansen, K., Kaklamanis, C., Mihail, M., Persiano, P.: Optimal Wavelength Routing in Directed Fiber Trees. Theoretical Computer Science 221(1-2), 119–137 (1999)
Kumar, V.: Approximating Circular Arc Colouring and Bandwidth Allocation in All–Optical Ring Networks. In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 147–158. Springer, Heidelberg (1998)
Kumar, V., Schwabe, E.: Improved Access to Optical Bandwidth in Trees. In: Proc. of the 8th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 1997), pp. 437–444 (1997)
Raghavan, P., Upfal, E.: Efficient Routing in All-Optical Networks. In: Proc. of the 26th Annual Symposium on Theory of Computing (STOC 1994), pp. 133–143 (1994)
Ramaswami, R., Sivarajan, K.: Optical Networks: A Practical Perspective. Morgan Kauffman Publishers, San Francisco (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Caragiannis, I., Kaklamanis, C., Persiano, P., Sidiropoulos, A. (2004). Fractional and Integral Coloring of Locally-Symmetric Sets of Paths on Binary Trees. In: Solis-Oba, R., Jansen, K. (eds) Approximation and Online Algorithms. WAOA 2003. Lecture Notes in Computer Science, vol 2909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24592-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-24592-6_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21079-5
Online ISBN: 978-3-540-24592-6
eBook Packages: Springer Book Archive