Skip to main content

Optimal On-Line Algorithms to Minimize Makespan on Two Machines with Resource Augmentation

  • Conference paper
Approximation and Online Algorithms (WAOA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2909))

Included in the following conference series:

  • 674 Accesses

Abstract

We study the problem of on-line scheduling on two uniformly related machines where the on-line algorithm has resources different from those of the off-line algorithm. We consider three versions of this problem: preemptive semi-online, non-preemptive on-line and preemptive on-line scheduling. For all these cases we design algorithms with best possible competitive ratios as a function of the machine speeds.

Research supported in part by the Israel Science Foundation (grant no. 250/01).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albers, S.: Better bounds for online scheduling. SIAM Journal on Computing 29(2), 459–473 (1999)

    Article  MathSciNet  Google Scholar 

  2. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line load balancing with applications to machine scheduling and virtual circuit routing. Journal of the ACM 44, 486–504 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bansal, N., Dhamdhere, K., Könemann, J., Sinha, A.: Non-clairvoyant scheduling for minimizing mean slowdown. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 260–270. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient scheduling problem. Journal of Computer and System Sciences 51(3), 359–366 (1995)

    Article  MathSciNet  Google Scholar 

  5. Bartal, Y., Karloff, H., Rabani, Y.: A better lower bound for on-line scheduling. Information Processing Letters 50, 113–116 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berman, P., Charikar, M., Karpinski, M.: On-line load balancing for related machines. Journal of Algorithms 35 (2000)

    Google Scholar 

  7. Berman, P., Coulston, C.: Speed is more powerful than clairvoyance. Nordic Journal of Computing 6(2), 181–193 (1999)

    MATH  MathSciNet  Google Scholar 

  8. Chen, B., van Vliet, A., Woeginger, G.J.: An Optimal Algorithm for Preemptive On-line Scheduling. Operations Research Letters 18, 127–131 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dobson, G.: Scheduling Independent Tasks on Uniform Processors. SIAM Journal on Computing 13(4), 705–716 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Epstein, L.: Optimal Preemptive On-Line Scheduling on Uniform Processors with Non-Decreasing Speed Ratios. Operations Research Letters 29(2), 93–98 (2001); Also in Ferreira, A., Reichel, H. (eds.): STACS 2001. LNCS, vol. 2010. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  11. Epstein, L., Favrholdt, L.M.: Optimal non-preemptive semi-online scheduling on two related machines. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 245–256. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Epstein, L., Favrholdt, L.M.: Optimal preemptive semi-online scheduling to minimize makespan on two related machines. Operations Research Letters 30(4), 269–275 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Epstein, L., Noga, J., Seiden, S.S., Sgall, J., Woeginger, G.J.: Randomized Online Scheduling on Two Uniform Machines. Journal of Scheduling 4(2), 71–92 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Epstein, L., Sgall, J.: A Lower Bound for On-Line Scheduling on Uniformly Related Machines. Operations Research Letters 26(1), 17–22 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Faigle, U., Kern, W., Turan, G.: On the performance of online algorithms for partition problems. Acta Cybernetica 9, 107–119 (1989)

    MATH  MathSciNet  Google Scholar 

  16. Fleischer, R., Wahl, M.: Online scheduling revisited. Journal of Scheduling 3(5), 343–353 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Friesen, D.K.: Tighter Bounds for LPT Scheduling on Uniform Processors. SIAM Journal on Computing 16(3), 554–560 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gonzalez, T., Ibarra, O.H., Sahni, S.: Bounds for LPT Schedules on Uniform Processors. SIAM Journal on Computing 6(1), 155–166 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating adversaries for request-answer games. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pp. 564–565 (2000)

    Google Scholar 

  20. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell System Technical Journal 45, 1563–1581 (1966)

    Google Scholar 

  21. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math 17, 416–429 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  22. Horwath, E., Lam, E.C., Sethi, R.: A Level Algorithm for Preemptive Scheduling. J. Assoc. Comput. Mach. 24, 32–43 (1977)

    MathSciNet  Google Scholar 

  23. Kalyanasundaram, B., Pruhs, K.: Maximizing job completions online. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 235–246. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  24. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. Journal of the ACM 47(4), 214–221 (2000)

    Article  MathSciNet  Google Scholar 

  25. Karger, D., Phillips, S., Torng, E.: A better algorithm for an ancient scheduling problem. Journal of Algorithms 20(2), 400–430 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lam, T.W., To, K.K.: Trade-offs between speed and processor in hard-deadline scheduling. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1999), pp. 623–632 (1999)

    Google Scholar 

  27. Mireault, P., Orlin, J.B., Vohra, R.V.: A Parametric Worst Case Analysis of the LPT Heuristic for Two Uniform Machines. Operations Research 45, 116–125 (1997)

    Article  MATH  Google Scholar 

  28. Rudin III., J.F.: Improved bounds for the on-line scheduling problem. PhD thesis, The University of Texas at Dallas (May 2001)

    Google Scholar 

  29. Seiden, S.: Preemptive Multiprocessor Scheduling with Rejection. Theoretical Computer Science 262(1-2), 437–458 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Seiden, S., Sgall, J., Woeginger, G.: Semi-online scheduling with decreasing job sizes. Operations Research Letters 27(5), 215–221 (2000)

    Article  MathSciNet  Google Scholar 

  31. Sgall, J.: A Lower Bound for Randomized On-Line Multiprocessor Scheduling. Inf. Process. Lett. 63(1), 51–55 (1997)

    Article  MathSciNet  Google Scholar 

  32. Sleator, D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28, 202–208 (1985)

    Article  MathSciNet  Google Scholar 

  33. Wen, J., Du, D.: Preemptive On-Line Scheduling for Two Uniform Processors. Operations Research Letters 23, 113–116 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Epstein, L., Ganot, A. (2004). Optimal On-Line Algorithms to Minimize Makespan on Two Machines with Resource Augmentation. In: Solis-Oba, R., Jansen, K. (eds) Approximation and Online Algorithms. WAOA 2003. Lecture Notes in Computer Science, vol 2909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24592-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24592-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21079-5

  • Online ISBN: 978-3-540-24592-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics