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Abstract

We study the problem of on-line scheduling on two uniformly related machines where the
on-line algorithm has resources different from those of the off-line algorithm. We consider three
versions of this problem, preemptive semi-online, non-preemptive on-line and preemptive on-line
scheduling. For all these cases we design algorithms with best possible competitive ratios as
functions of the machine speeds.

1 Introduction

The problem. We consider scheduling on two uniformly related machines with resource augmen-
tation. Jobs arrive one by one, and each job has to be assigned before the next job arrives.
We consider three different versions, preemptive semi-online scheduling, non-preemptive on-line
scheduling and preemptive on-line scheduling. Semi-online means that jobs must arrive in a de-
creasing order of size (processing time). Preemptive means that a job may be cut into a few pieces
and scheduled on both machines, but two parts of the same job may not be scheduled concurrently
on two different machines. This is allowed to both the on-line algorithm and the off-line algorithm.
The measure. A schedule is measured by makespan, i.e. the maximum completion time of
any machine. An on-line algorithm is measured by its competitive ratio, which is defined C =
sup

σ

{
ALG(σ)
OPT (σ)

}
, where σ is a list of jobs and ALG(σ) and OPT (σ) are the makespans of the schedules

created by the on-line algorithm and an optimal off-line algorithm for that list of jobs. We use the
notations OPT and ALG (omitting σ) when the sequence σ is clear from the context.
Resource augmentation. We consider cases where the resources may be augmented, i.e., an
optimal off-line algorithm has two uniformly related machines with possibly different speeds, which
may be faster or slower than the speeds of the machines of the on-line algorithm.

This is a generalization of competitive analysis. This generalization is useful since an on-line
scenario is very different from an off-line one. Therefore machines in both cases do not necessarily
should have the same speed. Comparison between an on-line algorithm with one set of speeds to
an off-line algorithm with a different set of speeds can imply that in order for the on-line algorithm
to be able to perform well, it needs to use faster machines.

Resource augmentation was introduced by Kalyanasundaram and Pruhs [25]. They studied
scheduling problems which are known to have unbounded competitive ratio. They showed that it
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is possible to attain a good competitive ratio if the machines of the on-line algorithm are slightly
faster than the machines of the off-line algorithm.

Resource augmentation has been applied to a number of problems. It was used already in the
paper where the competitive ratio was introduced [33]. In that paper, the performance of online
paging algorithms was studied, where they have a larger cache memory than that of an optimal
off-line algorithm. In several machine scheduling and load balancing problems [7, 24, 27, 3], the
effect of adding more or faster machines has been studied.
Preliminaries. The load of a job (or a part of job) of size (processing time) p, scheduled on
a machine of speed 1/z, is pz. We define the load of a machine as the total load of the jobs (or
parts of jobs) that are scheduled on that machine plus the sum of times when the machine is idle.
The weight of a machine is the sum of the sizes of jobs (or part of jobs) that are scheduled on that
machine. We slightly abuse the notation by identifying jobs with their sizes (processing times).

In the general case, resource augmentation on two uniformly related machines means that the
on-line algorithm has a slow machine with speed a and a fast machine with speed b, and the off-line
algorithm has a slow machine with speed A and a fast machine with speed B. However, with no
loss of generality we may assume the on-line algorithm has a slow machine with speed 1/s (s ≥ 1)
and a fast machine with speed 1, and an optimal off-line algorithm has a slow machine with speed
1/q (q ≥ 1) and a fast machine with speed 1. The speed 1/z implies that a machine of this speed
becomes slower as z grows.

Note that this assumption can be made, since a schedule with makespan x on a pair of machines
with speeds a and b (a < b), will have a makespan x · b on a pair of machines with speeds 1 and
a/b. This is true for any schedule, thus it is possible to assume, without loss of generality, that the
on-line algorithm has speeds 1 and 1/s = a/b. Similarly, it is possible to assume, without loss of
generality, that the off-line algorithm has speeds 1 and 1/q = A/B. We use the parameters q and
s throughout the paper.
Our results. In this paper we find the exact competitive ratio functions for all three versions we
consider, those are functions of s and q. For the preemptive cases, we show they are valid for both
a deterministic version of the problem and a randomized version. We give deterministic algorithms
which achieve these competitive ratios, but the lower bounds hold for randomized algorithms.

We show that the competitive ratio of preemptive semi-online scheduling is 1 for {q ≤ 3, s ≤ 2q
3 }

or for {q ≥ 3,s ≤ q+1
2 }, 3s(q+1)

2q+3sq for {q ≤ 3,2q
3 ≤ s ≤ 2} and {q < 3,s > 2}, and 2s(q+1)

q+1+2sq for
{q ≥ 3,s > q+1

2 }. For the last two cases we use idle time and prove that it is necessary.
Moreover, we show that the competitive ratio of non-preemptive on-line scheduling is

min
{

(1 + 2q)s
(s + 1)q

,
q + 1

q

}

and the competitive ratio of preemptive on-line scheduling is (q+1)2s
q(1+s+sq) .

Previous work. On-line scheduling. Scheduling on identical and uniformly related was studied
since 1966 when Graham introduced his greedy algorithm “List Scheduling” for identical machines
[21]. The competitive ratio of that algorithm is 2 − 1/m. Since then there was a sequence of
improvements on the performance of algorithms [4, 26, 1] and a sequence of lower bounds [5, 1, 20],
and the best current results are an algorithm of competitive ratio 1.9201, designed by Fleischer and
Wahl [17] and a lower bound of 1.88 given by Rudin [29]. For uniformly related machines there exist
constant competitive algorithms, see [2, 6]. The lowest upper bound known for the competitive
ratio is 5.828 whereas the lower bound is 2.438. For two and three identical machines, the paper
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[16] showed that the greedy algorithm has the best possible competitive ratio. The tight result for
two uniformly related machines (without resource augmentation) is folklore and is given in [14].
The competitive ratio is min{2q+1

q+1 , 1 + 1
q} for this problem, achieved by a greedy algorithm which

assigns a job to the machine which would finish it first.
Semi-online scheduling. Graham [22] also analyzed the greedy algorithm on identical machines

for the case where sizes (processing times) of jobs are non-increasing getting the result 4/3−1/(3m).
The results for two and three machines are 7/6 and 11/9. Seiden, Sgall and Woeginger [31] showed
lower bounds of 7/6 and 1.18046 for two and three machines respectively. Note that the bound for
two machines is tight, which means that the greedy algorithm has the best possible competitive
ratio for the problem.

Most of the study for semi-online scheduling on non-identical machines involves a study of the
greedy algorithm. For two machines, Mireault, Orlin and Vohra [28] gave a complete analysis of
the greedy algorithm as a function of the speed ratio. They show that the interval q ∈ [1,∞) is
partitioned into nine intervals, and introduced a function which gives the competitive ratio in each
interval. The reference [19] shows that for any speed ratio, the performance ratio of the greedy
algorithm is at most 1

4(1 +
√

17) ≈ 1.28. This was generalized in [12]. In that paper, a complete
analysis of the best competitive ratio as a function of the speed ratio was given. Here there are
already fifteen intervals. In most intervals the greedy algorithm turns out to be the best algorithm,
but there are several intervals where other algorithms are designed, and were shown to perform
better and to have the best possible competitive ratios. For a general setting of m uniformly
related machines, Friesen [18] showed that the overall approximation ratio of the greedy algorithm
is between 1.52 and 5

3 . Dobson [9] claimed to improve the upper bound to 19
12 ≈ 1.58. Unfortunately,

his proof does not seem to be complete.
On-line preemptive scheduling. There are several tight results for preemptive on-line schedul-

ing, in all cases the lower bounds hold also for randomized algorithms. Chen, Van Vliet and
Woeginger gave a preemptive optimal algorithm and a matching lower bound for identical ma-
chines [8]. The competitive ratio of the algorithm is mm/(mm − (m− 1)m). Seiden [30] also gave
such an optimal algorithm. His algorithm, has a lower makespan than the one in [8] in many
cases, however (naturally) it has the same competitive ratio. A lower bound of the same value was
given independently by Sgall [32]. For two uniformly related machines, the tight competitive ratio
is known to be (q + 1)2/(q2 + q + 1), given in [14] and independently in [34]. Those results are
extended for a class of m uniformly related machines with non-decreasing speed ratios in [11]. The
tight bound in that case is a function of all the speeds. A lower bound of 2 on the competitive
ratio was given already in [15].

Semi-online preemptive scheduling. Seiden, Sgall and Woeginger [31] studied semi-online
preemptive scheduling on identical machines. They showed that the most difficult case among
non-increasing sequences is a sequence of unit size jobs. They gave a complete solution, where the
competitive ratio is a function of the number m of machines.

The problem of preemptive semi-online scheduling on two uniformly related machines without
resource augmentation was studied by Epstein and Favrholdt [13], who proved a competitive ratio
of max

{
(3(q+1)
3q+2 , 2q(q+1)

2q2+q+1

}
where 1/q is the speed of the slow machine. They also proved that idle

time is necessary for q > 2.
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Figure 1: The partition to areas according to the five cases. The horizontal axis (respectively
vertical axis) is q (respectively s).

2 Preemptive Semi-Online Scheduling

In this section we consider semi-online preemptive scheduling on two uniformly related machines.
Recall that jobs arrive sorted in a non-increasing order of sizes. In the current section c(q, s) denotes
the optimal competitive ratio for this problem. We prove the following theorem.

Theorem 1 The optimal competitive ratio of deterministic or randomized semi-online preemptive
algorithm is,

c(q, s) =





1 for q ≤ 3 and s ≤ 2q
3 ,

1 for q ≥ 3 and s ≤ q+1
2 ,

3s(q+1)
2q+3sq for q ≤ 3 and 2q

3 ≤ s ≤ 2 ,
3s(q+1)
2q+3sq for q < 3 and s > 2 ,
2s(q+1)
q+1+2sq for q ≥ 3 and s > q+1

2 .

In the last two cases, only an algorithm which uses idle time can achieve this competitive ratio.
See Figure 1 for the five cases, where the regions are marked in alphabetical order according to the
order of the cases.

We first prove the lower bound and then design the algorithms. The only algorithms which use
idle time are for the cases where it is necessary. Note that due to resource augmentation, there
are two areas where the slow machine of the on-line algorithm is relatively fast and therefore an
“optimal” algorithm can be achieved. In those cases, adding speed to the on-line algorithm allows
us to overcome the on-line restriction.

2.1 Lower Bound

We start with two theorems that appeared in the literature and are useful for proving our results.
The first theorem deals with an optimal preemptive schedule. Unlike the non-preemptive case,

there exists a simple formula for calculating the optimal cost. The theorem is a special case of a
theorem given in [23].

Theorem 2 Given a set of jobs of total size P , the largest of which has size `, the makespan of an
optimal off-line algorithm (whose machine speeds are 1 and 1/q) is

max{`, Pq

q + 1
} .
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The second theorem gives a “recipe” of computing lower bounds for randomized on-line and
semi-online algorithms. Similar theorems were given in [15, 11, 13] and are adaptations of a theorem
from [32].

Theorem 3 Consider a sequence of at least two jobs, where the total size of jobs is P , and Jn−1,

Jn are the last two jobs (in this order). Let OPT (Ji) be the preemptive optimal off-line cost after
the arrival of Ji. The competitive ratio of any preemptive randomized on-line algorithm is at least

Ps

OPT (Jn−1) + sOPT (Jn)
.

Proof. Fix a sequence of random bits used by the algorithm. Let ONL(Ji) be the makespan of
the preemptive on-line algorithm after scheduling Ji. Let T1 = ONL(Jn), and let T2 be the last
time when both machines are busy simultaneously. Since a job cannot be processed concurrently
on both machines, we get ONL(Jn−1) ≥ T2.
Suppose c is the competitive ratio of the on-line algorithm. Since only one machine can be non-idle
during the time period between T2 and T1, we get

P ≤ (1 +
1
s
)T2 + (T1 − T2) = T1 +

T2

s
.

Taking the expectation we get

P ≤ E[T1] +
E[T2]

s
≤ E[ONL(Jn)] +

E[ONL(Jn−1)]
s

≤ cOPT (Jn) +
cOPT (Jn−1)

s
.

Hence
c ≥ Ps

OPT (Jn−1) + sOPT (Jn)
.

Note that we did not use the assumption that the jobs arrive at a decreasing order of size, thus
this theorem applies for the on-line case as well.

Lemma 4 The competitive ratio of any on-line preemptive randomized algorithm is at least

max
{

r1 =
2s(q + 1)

q + 1 + 2sq
, r2 =

3s(q + 1)
2q + 3sq

, 1
}

.

Proof. Consider three sequences consisting of one, two and three unit size jobs. For one job,
no algorithm can do better than scheduling all of it on the fast machine at time 0, achieving a
competitive ratio of 1. For sequences of 2 and 3 jobs, we get the lower bound by applying Theorem
3.

Lemma 5 For the cases {q < 3 , s > 2} and {q ≥ 3, s > q+1
2 } an on-line algorithm which does

not use idle time cannot achieve a competitive ratio of r2 and r1, respectively.

Proof. Consider a sequence of two unit jobs. Set i = 1 for q ≥ 3, i = 2 for q < 3. Recall that OPT

denotes the makespan of an optimal off-line algorithm. Under our assumptions, the first job cannot
be assigned to the slow machine, since in this case OPT = 1. This would cause the competitive
ratio to become s, which breaches our competitive ratio, due to the following.

r1 − s =
2s(q + 1)

q + 1 + 2sq
− s = s

q + 1− 2sq

q + 1 + 2sq
< 0
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since s > q+1
2 in this case, and

r2 − s =
3s(q + 1)
2q + 3sq

− s = s
q + 3− 3sq

q (2 + 3s)
< 0

since 3sq > 6 and q+3 ≤ 6. Thus the first job must be scheduled on the fast machine at time 0. For
two jobs, OPT = 2q

q+1 , thus the second job must be scheduled on the fast machine only after time
1, up to a time which is no later than time 2q

q+1ri. This means at least a part of size 1− ( 2q
q+1ri− 1)

of the second job must be scheduled on the slow machine. For both cases we consider, this schedule
is illegal since s

(
2− 2q

q+1ri

)
> 1 due to the following.

For r1, 2s−1− s 2q
q+1r1 = 2s−q−1

q+1+2sq > 0 for s > q+1
2 . For r2, 2s−1− s 2q

q+1r2 = s−2
2+3s > 0 for s > 2.

This implies that the second job is scheduled concurrently on both machines.

2.2 Algorithms Without Idle Time

In this section we present algorithms for the three cases in which creation of idle time in the
schedules can be avoided. By the previous section, three such cases may exist, {s ≤ 2q

3 , q ≤ 3},
{2q

3 < s < 2, q ≤ 3} and {s ≤ q+1
2 , q > 3}.

Lemma 6 For max{1, 2q
3 } ≤ s ≤ 2, q ≤ 3, there exists an on-line algorithm of competitive ratio

r2 = 3s(q+1)
2q+3sq which does not use idle time.

Proof. The first job J1 is scheduled on the fast machine. Without loss of generality, we may
assume it has size 1.
As long as the total size of jobs does not exceed 1 + 1

q , OPT = 1. Thus, we can use the interval
1 to r2 on the fast machine without violating the competitive ratio. For the next jobs we use
that interval first, and when it is full we go on to the time interval [0, s

(
1 + 1

q − r2

)
] on the slow

machine. When these two intervals are filled, the total size of the jobs scheduled is 1 + 1
q . At this

point, some job may be only partially assigned. Denote this job Jp. Since

(1 +
1
q
− r2)s =

(
1 +

1
q
− 3s

q + 1
2q + 3sq

)
s = 2s

q + 1
q (2 + 3s)

=
2s

2 + 3s

q + 1
q

≤ 4
8
· 2
1
≤ 1 ,

the load on the slow machine does not exceed 1, hence even if until this point some other job was
split between the two machines, its two parts do not overlap in time.
In this situation, the ratio of the loads of the two machines is 3:2 (and the ratio of weights of the
machines is 3s : 2). From now on, we keep this ratio, so that the fast machine is always more
loaded. Any arriving job of size x is split into two pieces of size 3sx

3s+2 (fast machine) and 2x
3s+2 (slow

machine). For the case that the total sum of sizes P is large enough (P ≥ 1 + 1
q ), OPT = qP

q+1 .
The on-line load on the fast machine (which is larger) is 3sP

3s+2 , and the competitive ratio is r2. This
completes the description of the algorithm. To complete the proof we need to show the following.
a. The second part of Jp is scheduled properly.
b. Any future job J is scheduled properly.
Proof of a - case 1, Jp was the second job to arrive.
Since it is scheduled on the fast machine only after time 1, we need only to show that on the slow
machine, it will be completed no later than time 1. Let x be the size of the second part of Jp. We
need to schedule 2x

3s+2 of the job (which consumes 2xs
3s+2 units of time on the slow machine). The
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size of the second job is at most 1, and 1
q of it was scheduled, so x ≤ 1− 1

q . Thus, after scheduling
Jp, we get that the load on the slow machine is

2s

3s + 2
· q + 1

q
+

2xs

3s + 2
≤ 2s

3s + 2

(
1 +

1
q

+ x

)
≤ 4s

3s + 2
≤ 1 .

Proof of a - case 2, Jp was the third job to arrive or a later job.
If Jp does not have its first part scheduled on the fast machine, then this case is similar to a case
here the first part and the second part are two different jobs, whose correctness is proven in the
next section. Otherwise, Jp < r2 − 1, since it must be smaller than the second job, and the second
job must be scheduled entirely on the first machine by the definition of the algorithm. In this case,
scheduling it on the slow machine will cause a load of no more than (r2−1)s = 3s2−2sq

2q+3sq ≤ 3s2−2s
2+3s ≤ 1

(for s ≤ 2). Thus, the part scheduled on the slow machine does not intersect J2, and thus it does
not intersect J3.
Proof of b.
We need to show that the interval on the slow machine is enough to schedule 2x

3s+2 . Let P be the
total size of previous jobs. Then 3s

3s+2P is the load of the fast machine and 2s
3s+2P is the load of

the slow machine just before scheduling J . The extra load that J causes is 2xs
3s+2 . Hence we need

Ps
3s+2 ≥ 2sx

3s+2 . This clearly holds since x ≤ P
2 because J is at least the third job.

Lemma 7 For s ≤ q+1
2 , q ≥ 3 and for s ≤ 2q

3 , q ≤ 3, there exist on-line algorithms of competitive
ratio 1 which do not use idle time.

Proof. The first job J1 is scheduled on the fast machine. Without loss of generality, we may
assume it has size 1. As long as the total size of jobs does not exceed 1 + 1

q , OPT = 1. Hence we
can proceed by scheduling the next 1

q total size of jobs on the slow machine without violating the
competitive ratio (since s

q < 1). When these jobs have been scheduled, the total size of the jobs
scheduled is 1 + 1

q . At this point, some job may be only partially assigned. Denote this job Jp. We
will show that even if this job was split between the two machines, its two parts do not overlap in
time.

In this situation, the ratio of the loads is q:s. From now on, we keep this ratio, so that the
fast machine is always more loaded. Any arriving job of size x is split into two pieces of size qx

q+1

(fast machine) and x
q+1 (slow machine). For the case that the total sum of sizes P is large enough

(P ≥ 1+ 1
q ), OPT = qP

q+1 . The load of the on-line algorithm on the fast machine (which is larger) is
qP
q+1 , and the competitive ratio is 1. This completes the description of the algorithm. To complete
the proof we need to show the following.
a. The second part of Jp is scheduled properly.
b. Any future job J is scheduled properly.
Proof of a - case 1, Jp was the second job to arrive.

A part of the second job is scheduled on the fast machine only after time 1, and another part
of it is scheduled on the slow machine. Thus we need only to show that the part assigned to the
slow machine will be completed no later than time 1.

Let x be the size of the second part of Jp. We need to schedule x
1+q of the job (which consumes

xs
1+q units of time on the slow machine). The size of the second job is at most 1, and 1

q of it was
scheduled, so x ≤ 1 − 1

q . Thus, after scheduling Jp, we get in the first case, that the load on the
slow machine is,

s

q
+

xs

1 + q
≤ s(1 + q) + (q − 1)s

q(1 + q)
=

2s

1 + q
≤ 1 .
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In the second case, by using s ≤ 2q
3 , and then by using q ≤ 3, that the load on the slow machine is,

s

q
+

xs

1 + q
≤ 2

3
+

2xq

3(1 + q)
≤ 4q

3(1 + q)
≤ 1 .

Proof of a - case 2, Jp was the third job to arrive or a later job.
In this case, the size of J2 is smaller than or equal to 1

q , or else Jp would have been a part of
J2, thus Jp ≤ 1

q . Let x be the size of the second part of Jp. We need to schedule x
1+q of the

job (which consumes xs
1+q units of time on the slow machine). In the first case, we get the load

s
q + xs

1+q ≤ 2s+sq
q(1+q) ≤ q+2

2q < 1 (since q > 2, x ≤ 1
q , s ≤ q+1

2 ). In the second case we get the load
s
q + xs

1+q ≤ 2
3 + 2xq

3(1+q) ≤ 2
3 + 2

3(1+q) ≤ 1, since q ≥ 1.
Proof of b.
Let x be the size of the arriving job J , and let P be the total size of previous jobs. Before scheduling
J , the load of the slow machine is sP

1+q , and the load of the fast machine is qP
1+q . We need to show

that the interval on the slow machine is enough to contain sx
1+q . In the first case, since J is at least

the third job, P ≥ 1 + x. Thus (using x ≤ 1) we get

sx

1 + q
+

sP

1 + q
− qP

1 + q
≤

q+1
2 x

q + 1
+

q+1
2 P

q + 1
− qP

q + 1
=

q+1
2 x− q−1

2 P

q + 1

≤
q+1
2 x− q−1

2 (1 + x)
q + 1

≤ 2x + 1− q

2(q + 1)
≤ 3− q

2(q + 1)
≤ 0 .

In the second case, we get sx
1+q + sP

1+q − qP
1+q ≤ 2qx−qP

3(q+1) ≤ 0 since x ≤ P
2 (as J is at least the third

job).

2.3 Algorithms With Idle Time

In this section we present algorithms for cases which were previously proven to require idle time to
reach our desired competitive ratio. Two such cases exist, {q < 3, s > 2}, for which we will prove a
competitive ratio of r2 = 3s(q+1)

2q+3sq , and {q ≥ 3, s > q+1
2 } for which we will prove a competitive ratio

of r1 = 2s(q+1)
q+1+2sq .

Lemma 8 For any pair of (q, s) such that q < 3 and s > 2, there exists an on-line preemptive
algorithm with competitive ratio of 3s(q+1)

2q+3sq . For any pair of (q, s) such that q ≥ 3 and s > q+1
2 ,

there exists an on-line preemptive algorithm with competitive ratio of 2s(q+1)
q+1+2sq .

Proof. We define the algorithm. Without loss of generality, we assume the first job has size 1.
Let r = 3s(q+1)

2q+3sq if q < 3, and 2s(q+1)
q+1+2sq otherwise. The first job is cut into two pieces, one of size r−1

s−1

which is scheduled on the slow machine until time r, and the other of size s−r
s−1 which is scheduled

on the fast machine starting from time 0. Note that s > 1 and r−1
s−1 + s−r

s−1 = 1, thus we need to
show that the sizes of both parts are non-negative. We need to show 1 ≤ r ≤ s. For the first
case, we have 3s(q+1)

2q+3sq ≥ 1 if and only if 3s ≥ 2q, which clearly holds since 3s > 6 > 2q. Moreover,
3s(q+1)
2q+3sq ≤ s if and only if q + 3 ≤ 3sq, which holds since 3sq ≥ 6q ≥ q + 5, for q ≥ 1. In the second

case, 2s(q+1)
q+1+2sq ≥ 1 if and only if 2s ≥ q + 1, which holds according to the definition of this interval,

moreover, 2s(q+1)
q+1+2sq ≤ s if and only if q + 1 ≤ 2sq, which holds since sq ≥ q ≥ 1 for q ≥ 1 and s ≥ 1.
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From now on, future jobs are scheduled on the first (possibly idle) time on the machine they
are scheduled on. If a job is scheduled on the slow machine and there is no idle time left, it will be
scheduled after time r.
As in previous algorithms, as long as the total size of the jobs does not exceed 1+ 1

q , these jobs are
scheduled on the fast machine until time r, and then on the slow machine. When the total size of
the jobs is 1 + 1

q , there is still idle time on the slow machine (by the definition of the algorithm),
the idle time ends when the total size of the jobs is r(1 + 1

s ), which is greater than 1 + 1
q , since

r(1+ 1
s )− 1− 1

q ≥ min{ q2−1
(q+1+2sq)q , q+1

q(2+3s)} ≥ 0 for q ≥ 1. The loads on the machines, not including

idle time, is r on the fast machine and s
(
1 + 1

q − r
)

on the slow machine. The ratio of the loads

is 3
2 if q ≤ 3, and 2

1+ 1
q

if q > 3. Since even after the first job OPT ≥ 1, the competitive ratio is

maintained up to this point.
We continue by keeping the ratio between the loads. For q ≤ 3 this means cutting any job of size x

into two pieces, one of size 3sx
3s+2 , which is assigned to the first available time on the fast machine,

and the other of size 2x
3s+2 , which is assigned to the first available time on the slow machine. For

q > 3 this means cutting any job of size x into two pieces, one of size 2xsq
q+1+2sq which is assigned to

the first available time on the fast machine, and the other of size x(q+1)
q+1+2sq which is assigned to the

first available time on the slow machine. Note that in both cases it is possible for the assignment
of some job to take up the idle time on the slow machine, in which case the piece assigned to the
slow machine is cut into two pieces, and is continued after time r.
Again we need to prove the leftover on the job for which the total size reached 1 + 1

q is scheduled
properly, and that any future job J are assigned properly. Since the free time before time r on
both machines is disjoint after scheduling the first job, there is no difference between a job and the
leftover of a job.
Case A, q ≤ 3.
Let P be the total size of previous jobs (such that P ≥ 1 + 1

q ). Let x be the size of job J . Then
3s

3s+2P is the load of the fast machine and 2s
3s+2P is the load of the slow machine before scheduling

J . Scheduling J will cause an extra load of 2xs
3s+2 on the slow machine. Hence, we need to show

that Ps
3s+2 ≥ 2xs

3s+2 . This clearly holds if is at least the third job, which implies x ≤ P
2 . Otherwise, J

is a leftover and then x ≤ 1− 1
q . For q ≤ 3, this implies that x ≤ 1− 1

q ≤ 1
2(1 + 1

q ) ≤ P
2 .

Case B, q > 3.
Let P be the total size of previous jobs (such that P ≥ 1 + 1

q ). Let x be the size of job J . Then
2qs

2qs+q+1P is the load of the fast machine and (q+1)s
2qs+q+1P is the load of the slow machine before

scheduling J . Scheduling J will cause an extra load of s(q+1)x
q+1+2qs on the slow machine. Hence, we

need to show that (q+1)xs
q+1+2qs ≤ (q−1)sP

q+1+2qs , which is implied by x ≤ q−1
q+1P. If J is the third job or a later

one then x ≤ P
2 ≤ q−1

q+1P. Otherwise, J is a leftover and x ≤ 1− 1
q . For q > 3, this implies

x ≤ 1− 1
q

=
(q − 1)(q + 1)

q2 + q
≤ q − 1

q + 1
· q + 1

q
≤ q − 1

q + 1
P .
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3 Non-Preemptive On-Line Scheduling

In this section we study the problem of deterministic non-preemptive scheduling with respect to
makespan on two machines. There is no restriction on the arriving jobs. Since preemption is not
allowed, we can assume that the algorithms cannot use idle time, as idle time does not improve the
situation. In the current section c(q, s) denotes the optimal competitive ratio for this problem. We
prove the following theorem.

Theorem 9 The optimal competitive ratio of deterministic on-line non-preemptive algorithm is
c(q, s) = (1+2q)s

(s+1)q for s < q+1
q and c(q, s) = q+1

q for s ≥ q+1
q .

Note that 1 ≤ c(q, s) ≤ 2.

3.1 Upper Bound

We define the algorithm LIST. Upon arrival of a job, for each machine, LIST has to compute the
time that the job would be completed if it is assigned to it. Then it schedules the job on a machine
where this time is minimized.

Lemma 10 LIST has a competitive ratio of at most min
{

(1+2q)s
(s+1)q , q+1

q

}
.

Proof. Consider the time just before the arrival of the job which determines the makespan. Let
x be the weight of the fast machine of the on-line algorithm, and let y be the weight on the slow
machine of the on-line algorithm at this point. Let ` be the size of the next job. Denote by ALG

the makespan of the schedule created by LIST, and the competitive ratio by c = ALG
OPT . We get

OPT ≥ x+y+`

1+ 1
q

= q(x+y+`)
1+q and OPT ≥ `. The on-line algorithm will assign the next job to the

machine where it will finish first. Thus ALG ≤ x + ` and ALG ≤ (y + `)s. We have (s + 1)ALG ≤
s(x+y+2`) ≤ s(x+y+`)+s` ≤ s(1+q)

q OPT +sOPT . Thus ALG ≤ OPT · s(1+q)+qs
(s+1)q → c ≤ s(1+2q)

q(s+1) .

Moreover, LIST is definitely no worse than scheduling every job on the fast machine - hence, c ≤ q+1
q .

Note that c = q+1
q for every s ≥ q+1

q . This value varies between 1 and 2, and is equal to φ ≈ 1.618
for s=q.

3.2 Lower Bound

We prove that no deterministic on-line algorithm can perform better than LIST.

Lemma 11 No deterministic on-line algorithm can have a better competitive ratio than (1+2q)s
(s+1)q if

s < q+1
q , and no deterministic on-line algorithm can have a better competitive ratio than q+1

q , if
s ≥ q+1

q .

Proof. First, we prove the lemma for s ≥ q+1
q . In this case, c = q+1

q . We use a sequence of two
jobs which is 1, q. Denote the on-line algorithm by ALG. If ALG schedules the first job on the
slow machine, it gets a competitive ratio of s ≥ q+1

q . Thus in order to maintain a competitive ratio
of less than q+1

q it must schedule the first job on the fast machine. In this case, its makespan is no
smaller than q + 1 after the second job, since scheduling it on the fast machine gives a makespan
of q + 1, and scheduling it on the slow machine gives a makespan of qs ≥ q + 1, while an optimal
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offline algorithm easily achieves a makespan of q.
For s < q+1

q , Set α = q+1−qs
s−q+qs . Note that since s < q+1

q , α > 0. We start with presenting the
algorithm a job of size 1. We have the following cases.
Case 1. The first job is assigned to the slow machine.
Set Ti = (1 + 1

α)i. Let j be an integer such that Tj ≤ 1 + q, Tj+1 > 1 + q. Such a number j must
exist since T0 = 1 and lim

n→∞Tn = ∞. In this case, we proceed with the following sequence, b0 = 1

(The job which was presented at first), b1 = 1
α , bi = 1

α(1+ 1
α)i−1 for all i ≥ 2. Note that Ti =

i∑
n=0

bn,

for all i ≥ 0. We give jobs from this sequence until some job bt is scheduled on the fast machine,
or until job bt = bj+1 is scheduled (on one of the machines), i.e. in total j + 2 jobs are scheduled.
The following cases may occur.
Case 1a, t < j + 1 and there is at least one job on each machine.
After the first time the algorithm scheduled a job on the fast machine, we present a job of size
qTt. The off-line algorithm achieves a makespan of qTt (scheduling all but the last job on the slow
machine, and the last job on the fast machine). The on-line algorithm can either schedule that
job on the slow machine or to the fast machine. If it is scheduled on the slow machine, we get a
competitive ratio of

sTt−1 + sqTt

qTt
=

s(1 + 1
α)t−1 + sq(1 + 1

α)t

q(1 + 1
α)t

=
s

(1 + 1
α)q

+ s

=
s(q + 1− qs + qs + q)

q(s + 1)
=

(1 + 2q)s
(s + 1)q

.

Otherwise, it is scheduled on the fast machine, and the competitive ratio is

bt + qTt

qTt
=

1
α(1 + 1

α)t−1 + q(1 + 1
α)t

q(1 + 1
α)t

= 1 +
1

q(1 + α)
= 1 +

1
q(1 + 1+q−qs

qs+s−q )

=
qs + s− q

q(s + 1)
+ 1 =

2qs + s

q(s + 1)
=

s(1 + 2q)
(s + 1)q

.

Case 1b, t = j + 1 and all jobs are on one machine.
We will show that either after j + 1 jobs or after j + 2 jobs, the competitive ratio is at least c.
We denote by OPTk, ALGk the makespans after scheduling job bk of an optimal off-line algorithm
and the on-line algorithm, respectively. In these two cases (k = j, j + 1), an optimal off-line
algorithm can put the first job on the slow machine and all the next jobs on the fast machine,
achieving makespans of OPTj ≤ q, OPTj+1 ≤ Tj − 1. The on-line algorithm places all jobs on the
slow machine, achieving makespans ALGj = sTj , ALGj+1 = sTj+1. If sTj

q ≥ s(1+2q)
q(s+1) the proof is

complete since ALGj

OPTj
≥ c. Otherwise, Tj < 1+2q

s+1 and Tj+1 = Tj(1 + 1
α) < 1+2q

s+1 (1 + 1
α) = 1+2q

q+1−qs .

Thus, the competitive ratio is at least sTj+1

Tj+1−1 = s
(
1 + 1

Tj+1−1

)
≥ s

(
1 + 1

1+2q
q+1−qs

−1

)
= s 2q+1

(s+1)q .

Case 2, The first job is scheduled on the fast machine.
Set Si = (1 + α)i. Let j be an integer such that Sj ≤ 1 + q, Sj+1 > 1 + q, which exists since α > 0.
In this case, we proceed with the following sequence, a0 = 1 (The job which was presented at

first), a1 = α, ai = α(1+α)i−1 for all i ≥ 2. Note that Si =
i∑

n=0
an. We give jobs from this sequence

until some job is scheduled on the slow machine, or until j + 2 jobs are scheduled. Let k be the
index of the last job, that is k = j + 1 if j + 2 jobs were scheduled, and otherwise k is the index of
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the job after which the sequence is stopped. The following cases may occur,
Case 2a, k < j + 1 and there is at least one job on each machine.
After the first time the algorithm scheduled a job on the fast machine, we give the on-line algorithm
a job of size qSk. The off-line algorithm achieves a makespan of qSk (scheduling all but the last
job on the slow machine, and the last job to the fast machine). An on-line algorithm can either
schedule the last job on the fast machine or on the slow machine.
If it is scheduled on the fast machine, the competitive ratio is at least
Sk−1+qSk

qSk
= (1+α)k−1+q(1+α)k

q(1+α)k = 1 + 1
q(1+α) = 1 + 1

q(1+ 1+q−qs
qs+s−q

)
= qs+s−q

q(s+1) + 1 = 2qs+s
q(s+1) = s(1+2q)

(s+1)q

If J is scheduled on the slow machine, the competitive ratio is at least
sak+sqSk

qSk
= sα(1+α)k−1+sq(1+α)k

q(1+α)k = sα
(1+α)q + s = s+qs−qs2

(s+1)q + s = s 2q+1
(s+1)q

Case 2b, k = j + 1 and all jobs are on one machine.
We show that after either j + 1 jobs or j + 2 jobs, the competitive ratio is at least c. We denote by
OPTt, ALGt the makespans after scheduling job at (t = k, k + 1) of an optimal algorithm and the
on-line algorithm, respectively. In this case, an optimal off-line algorithm can put the first job on
its slow machine and all the next jobs on its fast machine, achieving makespans of OPTj ≤ q and
OPTj+1 ≤ Sj+1 − 1. The on-line algorithm has scheduled the first j + 2 jobs on the fast machine,
achieving makespans ALGj = Sj , ALGj+1 = Sj+1. If Sj

q ≥ s(1+2q)
q(s+1) the proof is complete since

ALGj

OPTj
≥ c. Otherwise, Sj < s(1+2q)

s+1 and Sj+1 = Sj(1 + α) < s(1+2q)
s+1 (1 + α) = (1 + 2q) s

s−q+qs . Thus,
the competitive ratio is at least

Sj+1

Sj+1 − 1
= 1 +

1
Sj+1 − 1

≥ 1 +
1

(1+2q)s
s−q+qs − 1

= s
2q + 1

(s + 1) q
.

4 Preemptive On-Line Scheduling

We study the problem of deterministic and randomized scheduling with respect to makespan on
two machines. Idle time is allowed but our algorithms do not use it.

In this section we let r(s, q) denote the competitive ratio function. We prove the following
theorem.

Theorem 12 The optimal competitive ratio of any deterministic or randomized on-line preemptive
algorithm is r(s, q) = (1+q)2s

(1+s+sq)q .

Note that for all s and q, 1 ≤ r(s, q) ≤ 2 holds.

4.1 Lower Bound

Lemma 13 No deterministic or randomized on-line algorithm can achieve a competitive ratio bet-
ter than (1+q)2s

(1+s+sq)q .

Proof. We get this from theorem 1 stated in section 2, by using a sequence of very small jobs
(also called “sand”) with total size 1, followed by a job with size q. An optimal off-line algorithm
achieves a makespan of 1

1+ 1
q

on the sand. This is done by assigning an amount of 1
1+ 1

q

of the sand to

the fast machine and the rest which is an amount of 1

q
�
1+ 1

q

� of it to the slow machine. A makespan
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of q on the entire sequence is achieved by assigning all the sand to the slow machine and the other
job to the fast machine. We get a competitive ratio of at least

Ps

OPT (Jn−1) + sOPT (Jn)
=

(q + 1)s
1

1+ 1
q

+ qs
=

(q + 1)2s
q + sq(q + 1)

=
(q + 1)2s

q(1 + s + qs)
= r(s, q) .

4.2 Upper Bound

We use the following notation. A new (arriving) job has size `. The makespan of an optimal off-line
algorithm before scheduling ` is OPT . The load of the fast machine of the on-line algorithm before
scheduling ` is L1, and the load of the slow machine of the on-line algorithm before scheduling `

is L2. The total size of all the jobs before ` is w = L1 + L2
s . Analogously, L′1, L

′
2, w

′ and OPT ′ are
the load on the fast machine of the on-line algorithm, the load on the slow machine of the on-line
algorithm and the total size of the presented jobs and the makespan of an optimal off-line algorithm
after scheduling `. In this section, we use the variable r to denote r(s, q) for a fixed pair of s and
q that we are dealing with.

Lemma 14 For a given sequence of jobs, a1, a2, . . . , an, Let w =
n∑

i=1
an . If there exists some i for

which ai > q(w − ai), then i is unique and the makespan of the optimal off-line algorithm is ai.

Otherwise, the makespan of the optimal off-line algorithm is w/(1 + 1/q).

Proof. If ai exists then it must be unique since ai > qw/(q + 1) ≥ w/2. The bound on the
makespan of an optimal off-line algorithm follows from Theorem 2.
We define algorithm F. Whenever a new job ` arrives, schedule a part as large as possible of it
within the time interval [L1, rOPT ′] on the fast machine starting from L1, and process the rest (if
necessary) on the slow machine starting from L2.

Lemma 15 At any state of algorithm F, L2 ≤ L1
q+1 .

Proof. We prove the claim by induction on the number of jobs assigned. First, when no jobs are
assigned, the claim holds trivially. Suppose it holds prior to the arrival of a job `. If ` is not scheduled
on the slow machine it continues to hold, so we may assume some part of ` is scheduled on the slow
machine. In this case, it follows from the definition of our algorithm that L′1 = rOPT ′ ≥ r w+`

1+ 1
q

=

rqw′
q+1 = r q

q+1(L′2
s + L′1) = rq

s(q+1)L
′
2 + rq

q+1L′1. From this we get L′2 ≤
s(L′1− qr

q+1
L′1)

qr
q+1

= L′1(
s(q+1)

qr − s).

Using the definition of r, r = (1+q)2s
(1+s+sq)q , we get s(q+1)

qr = s(q+1)
q · (1+s+sq)q

(1+q)2s
= 1+s+sq

1+q and moreover
s(q+1)

qr − s = 1+s+sq
q+1 − sq+s

q+1 = 1
q+1 . We conclude that L′2 ≤ L′1

q+1

Thus, we never use more than the interval on the slow machine [L2,
r

q+1OPT ′ = L′1
q+1 ] to schedule

`. It remains to show that this is a legal assignment - i.e., ` is not scheduled concurrently on both
machines. It is enough to show that at every state of the algorithm L′2 ≤ L1.

Lemma 16 For a given w, ` the smallest available space for ` is achieved when L2 = L1
q+1 .
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Proof. Given the above restriction, the space available for ` is rOPT ′−L1 on the fast machine and
L1−L2 on the slow machine. This implies that the total space available is rOPT ′−L1+L1−L2

s , where

L2 = sw−sL1. Take the derivative of this function w.r.t L1 we get ∂
∂L1

(
rOPT ′ − L1 + L1−s(w−L1)

s

)
=

1
s , which means that the space for ` increases as L1 increases. Thus the minimal space is achieved
where L1 is minimal, that is, where L2 is maximal. Then from the previous lemma we achieve that
the minimum space is achieved at L2 = L1

q+1 .

Lemma 17 At every state of algorithm F , the assignment is legal.

Proof. By the previous lemma, we only need to show this for L2 = L1
q+1 . In this case, the total size

of the jobs on the slow machine is L1
s(q+1) . Thus, we get

w = L1 +
L1

s(q + 1)
→ w =

s(q + 1) + 1
s(q + 1)

L1 → L1 =
s(q + 1)

sq + s + 1
w → L2 =

s

sq + s + 1
w .

Showing the assignment is legal is achieved by showing the interval [L1, rOPT ′] on the fast machine
and [L2, L1] on the slow machine are enough to contain `. Thus, we need to show

` ≤ rOPT ′ − s(q + 1)
sq + s + 1

w +
s(q + 1)− s

s(sq + s + 1)
w ,

or
0 ≤ rOPT ′ − s(q + 1)

sq + s + 1
w +

s(q + 1)− s

s(sq + s + 1)
w − ` .

We have the following cases,
Case 1, ` ≤ qw.

In this case, we use the lower bound of w+`
1+ 1

q

for OPT ′. We get

rOPT ′ − s(q + 1)
sq + s + 1

w +
s(q + 1)− s

s(sq + s + 1)
w − ` ≥ qr(w + `)

q + 1
− s(q + 1)− q

sq + s + 1
w − `

=
(1 + q)s` + qw − `(sq + s + 1)

sq + s + 1
=

qw − `

sq + s + 1
≥ 0

since ` ≤ qw.

Case 2, ` > qw.

In this case, we use the lower bound of ` for OPT ′. We get

rOPT ′ − s(q + 1)
sq + s + 1

w +
s(q + 1)− s

s(sq + s + 1)
w − ` ≥ rl − s(q + 1)− q

sq + s + 1
w − `

=
`(s + s

q − 1)− w(sq + s− q)

sq + s + 1
≥ w(qs + s− q − sq − s + q)

sq + s + 1
= 0 .

The last inequality is true since ` > qw and s + s
q > 1.

5 Conclusion

We gave tight bounds for three models. We did not study the on-line non-preemptive model. In
[12] where this model is studied, the interval [1,∞) of the speed ratio between the two machines
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is split into 15 intervals, each of which stands for a totally different case. The proofs are very
technical and therefore it seems that an extension to the resource augmented model would be too
complicated.

Another interesting generalization of all variants studied in this paper is the case of m uniformly
related machines. Recently Ebenlendr, Jawor and Sgall [10] extended the result of [11] and designed
preemptive online algorithms of optimal competitive ratios for all speed combinations. A study
with resource augmentation seems to be difficult due to the large number of possible cases.

There are certainly many other two machine models to which resource augmentation can be
applied.
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