Abstract
We present new linear time algorithms using the SPQR-tree data structure for computing planar embeddings of planar graphs optimizing certain distance measures. Experience with orthogonal drawings generated by the topology-shape-metrics approach shows that planar embeddings following these distance measures lead to improved quality of the final drawing in terms of bends, edge length, and drawing area.
Given a planar graph, the algorithms compute the planar embedding with
-
1
the minimum depth among the set of all planar embeddings of G,
-
2
the external face of maximum size among the set of all planar embeddings of G,
-
3
the external face of maximum size among the set of all embeddings of G with minimum depth.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Batini, C., Nardelli, E., Tamassia, R.: A layout algorithm for data-flow diagrams. IEEE Trans. Soft. Eng. SE-12(4), 538–546 (1986)
Batini, C., Talamo, M., Tamassia, R.: Computer aided layout of entity relationship diagrams. The Journal of Systems and Software 4, 163–173 (1984)
Batini, C., Talamo, M., Tamassia, R.: Computer aided layout of entityrelationship diagrams. Journal of Systems and Software 4, 163–173 (1984)
Bienstock, D., Monma, C.L.: On the computational complexity of embedding planar graphs to minimize certain distance measures. Algorithmica 5(1), 93–109 (1990)
Chiba, N., Nishizeki, T., Abe, S., Ozawa, T.: A linear algorithm for embedding planar graphs using PQ-trees. J. Computer and System Sciences 30, 54–76 (1985)
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Englewood Cliffs (1998)
Di Battista, G., Tamassia, R.: On-line maintanance of triconnected components with SPQR-trees. Algorithmica 15, 302–318 (1996)
Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)
Didimo, W., Liotta, G.: Computing orthogonal drawings in a variable embedding setting. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 79–88. Springer, Heidelberg (1998)
Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Computing 31(2), 601–625 (2002)
Graph drawing toolkit: An object-oriented library for handling and drawing graphs, http://www.dia.uniroma3.it/gdt
Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)
Liotta, G., Vargiu, F., Di Battista, G.: Orthogonal drawings with the minimum number of bends. In: Proceedings of the 6th Canadian Conference on Computational Geometry, pp. 281–286. University of Saskatchewan (1994)
Mehlhorn, K., Mutzel, P.: On the embedding phase of the Hopcoft and Tarjan planarity testing algorithm. Algorithmica 16(2), 233–242 (1996)
Mutzel, P., Weiskircher, R.: Bend minimization in orthogonal drawings using integer programming. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 484–493. Springer, Heidelberg (2002)
Pizzonia, M., Tamassia, R.: Minimum depth graph embedding. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 356–367. Springer, Heidelberg (2000)
Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)
Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern. SMC-18(1), 61–79 (1988)
Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)
Weiskircher, R.: New Applications of SPQR-Trees in Graph Drawing. PhD thesis, Universität des Saarlandes (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gutwenger, C., Mutzel, P. (2004). Graph Embedding with Minimum Depth and Maximum External Face. In: Liotta, G. (eds) Graph Drawing. GD 2003. Lecture Notes in Computer Science, vol 2912. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24595-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-24595-7_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20831-0
Online ISBN: 978-3-540-24595-7
eBook Packages: Springer Book Archive