A Constrained, Force-Directed Layout
Algorithm for Biological Pathways

Burkay Genc and Ugur Dogrusoz

Computer Engineering Department and
Center for Bioinformatics, Bilkent Univ., Ankara 06800, Turkey

Abstract. We present a new elegant algorithm for layout of biological
signaling pathways. It uses a force-directed layout scheme, taking into
account directional and regional constraints enforced by different molec-
ular interaction types and subcellular locations in a cell. The algorithm
has been successfully implemented as part of a pathway integration and
analysis toolkit named PATIKA, and results with respect to computa-
tional complexity and quality of the layout have been found satisfactory.

1 Introduction

As graphical user interfaces have improved, and more state-of-the-art software
tools have incorporated visual functions, interactive graph editing and diagram-
ming facilities have become important components in visualization systems [4].
Biology is no exception. In order to make useful deductions about a cell, an
inherently complex multi-body system, one needs to consider cellular pathways
as an interconnected network rather than separate linear signal routes.

There has been a few studies done specifically for layout of biological path-
ways as well, focusing on metabolic pathways. Karp and Paley [6] proposed a
divide-and-conquer algorithm to identify a number of pre-determined subtopolo-
gies such as paths, cycles, and trees so that different layout approaches may be
applied on each part. Becker and Rojas [I] improve this approach by supplement-
ing a special force-directed layout algorithm and additional layout heuristics.

PaTikA [3], a pathway database and tool, is mainly intended for signaling
pathways whose underlying graph structure can be arbitrarily more complicated
and irregular than that of metabolic pathways.

In this paper, we introduce an efficient and powerful layout algorithm devised
for pathway graphs as defined by PATIKA ontology [2]. It is based on the spring
force directed layout algorithm [5] with regional constraints. It also uses a similar
idea to magnetic fields of Sugiyama [[7] but employs per edge fields to enforce edge
orientation constraints, which are allowed to adaptively change during layout.

2 Pathway Model

The structure of pathway graphs highly depend on the type of the pathways and
the ontology used to represent the biological phenomenon. We assume the basics

G. Liotta (Ed.): GD 2003, LNCS 2912, pp. 314-319] 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Constrained, Force-Directed Layout Algorithm 315

&P \z p
al _..e 4 @
| it

Cytoplasm
Nucl. Memb.

Mitoch.

|
)

Fig. 1. An example illustrating the basics of the assumed ontology. The states, transi-
tions, and interactions (substrates such as the one with source S1, products such as the
one with target S1’, and effectors such as the one with source S2) are represented with
ovals, rectangles, and lines of varying types, respectively, and cellular compartments
are separated by orthogonal lines.

of the ontology described in [3l2], which represents a cellular process in the form
of a directed graph called pathway graph (Figure[ll). Usually the pathway graphs
representing signaling pathways do not possess the uniform properties that those
representing metabolic pathways do.

3 Layout Algorithm

We have chosen to use a force-directed layout algorithm with constraints to
satisfy the criteria of the specific underlying model as well as the general con-
ventions in pathway graph drawings. Basically, it is a virtual dynamic system in
which nodes are assumed to have a certain “mass”, connected via “springs” of a
pre-specified desired length. Thus each node in a pathway graph is applied both
spring and mode-to-node repulsion forces. Spring forces include relativity con-
straint forces that are applied on each substrate, product, activator or inhibitor
node to align the corresponding edge to lie towards the left, right, top or bottom
of the associated transition, respectively. Furthermore, each horizontal (vertical)
compartment separator is part of this physical system, on which the rest of the
system can apply forces, moving them in only vertical (horizontal) direction.
We also assume “gravitational” forces on compartment separators, disallowing
a compartment to unnecessarily expand (Figure 2). Thus the optimal layout is
regarded as the state of this system in which total energy is minimal.

The layout algorithm is split into three major phases, each of which alternates
between odd and even-numbered minor phases. The first major phase is mainly
for unscrambling the pathway graph with the help of high repulsion force ranges
and the concept of pulsing. This is achieved by expanding the graph to a much
larger area in a new minor phase compared to the previous one, and vice versa.

The second phase is where each edge adapts a best orientation for itself with
the concept of “maturity”. As an edge stays in a certain orientation (e.g., left-to-

316 B. Genc and U. Dogrusoz

|
+—
Ve

compartment
buffer

Fig. 2. An example showing various types of forces on a state A (Vi, V;, and Vi.:
spring, repulsion, and relativity constraint forces, respectively) and a compartment
separator. Both move towards left by total forces V4 and V., respectively.

right) over consecutive iterations, its maturity is increased; and after a certain
period, it “adapts” this orientation.

The last major phase is the stabilization phase, where all forces are pulled
down to a minimum level, and pulsing and adaptive layout are disabled. In this
phase compartments are also allowed to shrink.

The following method is used for calculating the relativity constraint forces
acting over an edge. The method is clearly of ©(1) time complexity.

algorithm ArpLYRCF(Edge e)
{u,v} = {source,target} node of e
if this is an adaptive layout then
if we are at major phase 2 then
Increment maturity of e
if e is mature and orientation is not satisfied then
Change orientation of e as appropriate

Calculate V,.. on e according to its orientation
Split the force into components: V,% and V%,
Update {u,v}.sf.z and {u,v}.sf.y by V;% and V,%, resp.

[\

o~~~ —

© 0 ~J O O W
—_ D DD O

The next method is of @(|E|) and calculates the general spring forces acting
on each edge using Fs = (A — edgeLength)?/n, where) is the ideal edge length
and 7 is the elasticity constant of the edge.

algorithm APPLYSPRINGFORCES(Graph G = (V, E))

(1) foree€ E do

(2) {u,v} = {source,target} node of e

(3) Calculate the spring force Vi acting on e

(4) Split the force into components: V¥ and VY

(5) Update {u,v}.sf.xz and {u,v}.sf.y by V¥ and V¥, resp.
(6) call APPLYRCF (e)

Node-to-node repulsion forces are calculated using the formula F,, = a/(d2+
di)7 where « is the repulsion constant and d, and d,, are the differences in x and
y coordinates of the two repulsing nodes, respectively.

A Constrained, Force-Directed Layout Algorithm 317

algorithm ApPPLYMASSFORCES(Graph G = (V, E))

(1) Create empty set S of layout nodes

(2) forueVdo

(3) Insert u into S

(4) forveV —Sdo

(5) if u and v are in repulsion range then

(6) Calculate repulsion force V. acting on v and v

(7) Split the force into components: V,* and V¥

(8) Update {u,v}.rf.z and {u,v}.rf.y by V;* and V¥, resp.

Steps 6-8 are handled in ©(1) steps executed a total of maximum O(|V|?)
times. However, since a node pair affect each other only when they are below a
certain geometric distance, the average complexity is expected to be lower.

The following method controls the compartment constraints.

algorithm CHECKCOMPARTMENTRULES(Graph G = (V, E))
(1) forueV do
(2) Calculate newX, newY, newRx and newRy based on old
coordinates and V7, VY, V¥ and V;Y values of u

(3) if u is a state then

(4) if compartment bounds are violated by newRz or newRy then
(5) if compartment resizing is enabled then

(6) Resize compartment of u

(7 else

(8) Alter V7, VY so as to keep v within compartment borders
9) if compartment bounds are violated by newX or newY then
(10) Alter V', V¥ so as to keep u within compartment borders
(11) Increment error by V¥, V¥, V¥ and V! of u

(12) Update coordinates of u.z and w.y with newX and newY’, resp.

Step 6 might require displacement of all nodes taking O(]V|) time to com-
plete. The compartments are normally resized no more than once or twice per
iteration. Thus, the overall time complexity is O(|V|?) in the worst case and
O(]V]) on the average.

The main layout algorithm is as follows:

algorithm LayouT()

) Set step to 0

) if an incremental layout is to be done then
) Increment step to second major phase
) else

) Set repulsionRange to MAX_REPULSION_RANGE
) while step <MAX_ITERATION_.COUNT do
) if entering second major phase then
) Set repulsionRange to desiredRange for second major phase
) Set error to 0

0 call ApPLYSPRINGFORCES()

1 if in an odd minor phase or in third major phase then

2 call ApPLYMASSFORCES()

3 call CHECKCOMPARTMENTRULES()

NN N

318 B. Genc and U. Dogrusoz

) if in third major phase and step mod shrinkPeriod == 0 then
) Shrink all compartments from all sides as much as possible

) if error <ERROR_THRESHOLD then

) Jump to next minor phase by adjusting step

) if in third major phase then

) Immediately finish layout

) Increment step by 1

30000

Tokal
25000

S50 Ablned

CCR

15000

milliseconds

10000

/ ERE
5000

'ﬁ:—/;i-’,/ a5F
o ; -

10 50 110 160 210 280
number of nodes

Fig. 3. Graph size vs. execution time.

g }/4\«:\}/’
R et

) G BT 4
e R

AT MRt By i gess Dk |

Sisuz Se s

Fig. 4. An example layout for the p53 pathway.

The first and second major phases only differ in the amount of repulsion
range considered when calling APPLYMASSFORCES. For the odd-numbered mi-
nor phases and first two major phases the overall worst-case time complexity
of each layout iteration is O(|E| + |V|? + |[V|) = O(|V|?) for sparse graphs. For

A Constrained, Force-Directed Layout Algorithm 319

the even-numbered phases this is reduced to O(|E| + |V|). In the third major
phase, the repulsion forces are always calculated; additionally, a shrink opera-
tion is performed at certain periods yielding an overall complexity of O(|V|?) for
sparse graphs. In the worst case if we assume that all phases are executed to the
end and all node pairs are considered for repulsion calculations, the overall time
complexity is O(K - |V'|?) over a total of K iterations needed for minimizing the
total energy of the system.

4 Implementation and Results

The algorithm described above has been implemented and tested within the
PATIKA pathway editor [3]. For each test a random graph is generated and all
nodes are randomly assigned a compartment. The number of edges per graph is
chosen to be linear in the number of nodes as in a typical pathway graph. For
similar reasons one in every 20 edges or so are added as a back edge to form a
new cycle.

Figure Blshows the run time behavior of each layout component with increas-
ing number of nodes. It is clear that the time spent inside the APPLYSPRING-
FORCES method is linear with respect to the number of nodes as expected.
Execution time of the algorithm is affected by other parameters of the algorithm
as suggested by the theoretical analysis.

The quality of the layout is found to be acceptable in terms of general graph
drawing criteria (e.g., discovering symmetries, minimizing edge crossings) as well
as pathway graph drawing conventions (Figure [4)).

References

1. M. Y. Becker and I. Rojas. A graph layout algorithm for drawing metabolic path-
ways. Bioinformatics, 17:461-467, 2001.

2. E. Demir, O. Babur, U. Dogrusoz, A. Gursoy, A. Ayaz, G. Gulesir, G. Nisanci, and
R. Cetin-Atalay. An ontology for collaborative construction and analysis of cellular
pathways. To appear in Bioinformatics, 2003.

3. E. Demir, O. Babur, U. Dogrusoz, A. Gursoy, G. Nisanci, R. Cetin-Atalay, and
M. Ozturk. PATIKA: An integrated visual environment for collaborative construc-
tion and analysis of cellular pathways. Bioinformatics, 18(7):996-1003, 2002.

4. U. Dogrusoz, Q. Feng, B. Madden, M. Doorley, and A. Frick. Graph visual-
ization toolkits. [EEE Computer Graphics and Applications, 22(1):30-37, Jan-
uary/February 2002.

5. T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed place-
ment. Software Practice and Ezperience, 21(11):1129-1164, 1991.

6. P. D. Karp and S. Paley. Automated drawing of metabolic pathways. In Third
International Conference on Bioinformatics and Genome Research, pages 225—238,
Tallahassee, Florida, June 1994.

7. K. Sugiyama and K. Misue. A simle and unified method for drawing graphs:
Magnetic-spring algorithm. In R. Tamassia and I. Tollis, editors, Graph Drawing
(Proc. GD ’94), volume 894 of Lecture Notes in Computer Science, pages 364-375.
Springer-Verlag, 1995.

	Introduction
	Pathway Model
	Layout Algorithm
	Implementation and Results

