Abstract
Using results from extremal graph theory, we determine the asymptotic number of string graphs with n vertices, i.e., graphs that can be obtained as the intersection graph of a system of continuous arcs in the plane. The number becomes much smaller, for any fixed d, if we restrict our attention to systems of arcs, any two of which cross at most d times. As an application, we estimate the number of different drawings of the complete graph K n with n vertices under various side conditions.
János Pach has been supported by NSF grant CR-00-98246, PSC-CUNY Research Award 62450-0031 and OTKA-T-032452. Géza Tóth has been supported by OTKA-T-032452 and OTKA-T-038397.
Chapter PDF
Similar content being viewed by others
References
Benzer, S.: On the topology of the genetic fine structure. Proceedings of the National Academy of Sciences of the United States of America 45, 1607–1620 (1959)
Bollobás, B.: Extremal Graph Theory, London Mathematical Society Monographs, vol. 11. Academic Press/Harcourt Brace Jovanovich, Publishers, London-New York (1978)
Bollobás, B., Thomason, A.: Hereditary and monotone properties of graphs. In: Graham, R.L., Nešetřil, J. (eds.) The mathematics of Paul Erdős II. Algorithms Combin, vol. 14, pp. 70–78. Springer, Berlin (1997)
Chen, Z.-Z., Grigni, M., Papadimitriou, C.H.: Planar map graphs. In: STOC 1998, pp. 514–523. ACM, New York (1998)
Chen, Z.-Z., Grigni, M., Papadimitriou, C.H.: Planar topological inference. In: Algorithms and Theory of Computing, Kyoto. Sūrikaisekikenkyūsho Kōkyūroku, vol. 1041, pp. 1–8 (1998)
Chen, Z.-Z., He, X., Kao, M.-Y.: Nonplanar topological inference and political-map graphs. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD, pp. 195–204. ACM, New York (1999)
Chojnacki, C., Hanani, A.: Über wesentlich unplättbare Kurven im dreidimensionalen Raume. Fund. Math. 23, 135–142 (1934)
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)
Egenhofer, M.: A model for detailed binary topological relationships. Geomatica 47, 261–273 (1993)
Erdős, P.: On some extremal problems in extremal graph theory. Israel J. Math. 3, 113–116 (1965)
Egenhofer, M., Franzosa, R.: Point-set topological spatial relations. International Journal of Geographical Information Systems 5, 161–174 (1991)
Egenhofer, M., Sharma, J.: Assessing the consistency of complete and incomplete topological information. Geographical Systems 1, 47–68 (1993)
Ehrlich, G., Even, S., Tarjan, R.E.: Intersection graphs of curves in the plane. Journal of Combinatorial Theory, Series B 21, 8–20 (1976)
Erdős, P., Frankl, P., Rödl, V.: The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. Graphs and Combinatorics 2, 113–121 (1986)
Erdős, P., Simonovits, M.: A limit theorem in graph theory. Studia Sci. Math. Hungar. 1, 51–57 (1966)
Erdős, P., Stone, A.H.: On the structure of linear graphs. Bulletin Amer. Math. Soc. 52, 1087–1091 (1946)
Even, S., Pnueli, A., Lempel, A.: Permutation graphs and transitive graphs. Journal of Association for Computing Machinery 19, 400–411 (1972)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
Goodman, J.E., Pollack, R.: Upper bounds for configurations and polytopes in R d. Discrete Comput. Geom. 1, 219–227 (1986)
Graham, R.L.: Problem. In: Hajnal, A., Sós, V.T. (eds.) Combinatorics, vol. II, p. 1195. North-Holland Publishing Company, Amsterdam (1978)
Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. J. ACM 21, 549–568 (1974)
Kratochvíl, J.: String graphs. In: Graphs and Other Combinatorial Topics (Prague, 1982), Teubner-Texte Math., Teubner, Leipzig, vol. 59, pp. 168–172 (1983)
Kratochvíl, J.: String graphs I: The number of critical nonstring graphs is infinite. Journal of Combinatorial Theory, Series B 52, 53–66 (1991)
Kratochvíl, J.: String graphs II: Recognizing string graphs is NP-hard. Journal of Combinatorial Theory, Series B 52, 67–78 (1991)
Kratochvíl, J.: Crossing number of abstract topological graphs. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 238–245. Springer, Heidelberg (1999)
Pach, J., Agarwal, P.K.: Combinatorial Geometry. Wiley Interscience, New York (1995)
Pach, J., Solymosi, J.: Crossing patterns of segments. Journal of Combinatorial Theory, Ser. A 96, 316–325 (2001)
Pach, J., Tóth, G.: Recognizing string graphs is decidable. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 247–260. Springer, Heidelberg (2002); Also in: Discrete and Computational Geometry 28, 593–606 (2002)
Prömel, H.J., Steger, A.: Excluding induced subgraphs III: A general asymptotic. Random Structures and Algorithms 3, 19–31 (1992)
Schaefer, M., Stefankovic̆, D.: Decidability of string graphs. In: Proceedings of the 33rd Annual Symposium on the Theory of Computing, pp. 241–246 (2001)
Schaefer, M., Sedgwick, E., Stefankovic̆, D.: Recognizing string graphs in NP. In: Proceedings of the 34rd Annual Symposium on the Theory of Computing, pp. 1–6 (2002)
Sinden, F.W.: Topology of thin film RC circuits. Bell System Technological Journal, 1639–1662 (1966)
Smith, T.R., Park, K.K.: Algebraic approach to spatial reasoning. International Journal of Geographical Information Systems 6, 177–192 (1992)
Tutte, W.T.: Toward a theory of crossing numbers. J. Combinatorial Theory 8, 45–53 (1970)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pach, J., Tóth, G. (2004). How Many Ways Can One Draw a Graph?. In: Liotta, G. (eds) Graph Drawing. GD 2003. Lecture Notes in Computer Science, vol 2912. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24595-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-24595-7_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20831-0
Online ISBN: 978-3-540-24595-7
eBook Packages: Springer Book Archive