Skip to main content

A Volumetric FFT for BlueGene/L

  • Conference paper
High Performance Computing - HiPC 2003 (HiPC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2913))

Included in the following conference series:

Abstract

BlueGene/L is a massively parallel supercomputer organized as a three-dimensional torus of compute nodes. A fundamental challenge in harnessing the new computational capabilities of BlueGene/L is the design and implementation of numerical algorithms that scale effectively on thousands of nodes. A computational kernel of particular importance is the Fast Fourier Transform (FFT) of three-dimensional data. In this paper, we present the approach we are taking in BlueGene/L to produce a scalable FFT implementation. We rely on a volume decomposition of the data to take advantage of the toroidal communication topology. We present experimental results using an MPI-based implementation of our algorithm, in order to test the basic tenets behind our decomposition and to allow experimentation on existing platforms. Our preliminary results indicate that our algorithm scales well on as many as 512 nodes for three-dimensional FFTs of size 128 × 128 × 128.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adiga, N.R., et al.: An overview of the BlueGene/L supercomputer. In: SC 2002 – High Performance Networking and Computing, Baltimore, MD (November 2002)

    Google Scholar 

  2. Almasi, G., Almasi, G.S., Beece, D., Bellofatto, R., Bhanot, G., Bickford, R., Blumrich, M., Bright, A.A., Brunheroto, J., Cascaval, C., Castaños, J., Ceze, L., Coteus, P., Chatterjee, S., Chen, D., Chiu, G., Cipolla, T.M., Crumley, P., Deutsch, A., Dombrowa, M.B., Donath, W., Eleftheriou, M., Fitch, B., Gagliano, J., Gara, A., Germain, R., Giampapa, M.E., Gupta, M., Gustavson, F., Hall, S., Haring, R.A., Heidel, D., Heidelberger, P., Herger, L.M., Hoenicke, D., Jackson, R.D., Jamal- Eddine, T., Kopcsay, G.V., Lanzetta, A.P., Lieber, D., Lu, M., Mendell, M., Mok, L., Moreira, J., Nathanson, B.J., Newton, M., Ohmacht, M., Rand, R., Regan, R., Sahoo, R., Sanomiya, A., Schenfeld, E., Singh, S., Song, P., Steinmacher-Burow, B.D., Strauss, K., Swetz, R., Takken, T., Vranas, P., Ward, T.J.C.: Cellular supercomputing with system-on-a-chip. In: Proceedings of International Solid-State Circuits Conference, ISSCC 2002 (2002)

    Google Scholar 

  3. Cramer, C.E., Board, J.A.: The development and integration of a distributed 3D FFT for a cluster of workstations. In: 4th Annual Linux Showcase and Conference, Atlanta, GA, October 2000, pp. 121–128 (2000)

    Google Scholar 

  4. Deserno, M., Holm, C.: How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys. 109(18), 7678–7693 (1998)

    Article  Google Scholar 

  5. Ding, H.Q., Ferraro, R.D., Gennery, D.B.: A portable 3D FFT package for distributedmemory parallel architecture. In: SIAM Conference on Parallel Processing for Scientific Computing (1995)

    Google Scholar 

  6. Edelman, A., McCorquodale, P., Toledo, S.: The future fast Fourier transform? SIAM J. Sci. Comput. 20, 1094–1114 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fitch, B.G., Germain, R.S., Mendell, M., Pitera, J., Rayshubskiy, A., Sham, Y., Suits, F., Swope, W., Zhestkov, Y., Zhou, R.: Blue Matter, an application framework for molecular simulation on Blue Gene. Journal of Parallel and Distributed Computing (2003) (to appear)

    Google Scholar 

  8. Frigo, M., Johnson, S.G.: The fastest Fourier transform in the west. Technical Report MIT-LCS-TR-728, Laboratory for Computing Sciences, MIT, Cambridge, MA (1997)

    Google Scholar 

  9. Frigo, M., Johnson, S.G.: FFTW: An adaptive software architecture for the FFT. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 3, pp. 1381–1384 (1998)

    Google Scholar 

  10. Haynes, P.D., Cote, M.: Parallel fast Fourier transforms for electronic structure calculations. Comp. Phys. Comm. 130, 121 (2000)

    Article  Google Scholar 

  11. Zapata, E.L., Rivera, F.F., Benavides, J., Garazo, J.M., Peskin, R.: Multidimensional fast Fourier transform into fixed size hypercubes. IEE Proceedings 137(4), 253–260 (1990)

    Google Scholar 

  12. Zhou, R., Harder, E., Xu, H., Berne, B.J.: Efficient multiple time step method for use with Ewald and particle mesh Ewald for large biomolecular systems. J. Chem. Phys. 115, 2348–2358 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eleftheriou, M., Moreira, J.E., Fitch, B.G., Germain, R.S. (2003). A Volumetric FFT for BlueGene/L. In: Pinkston, T.M., Prasanna, V.K. (eds) High Performance Computing - HiPC 2003. HiPC 2003. Lecture Notes in Computer Science, vol 2913. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24596-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24596-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20626-2

  • Online ISBN: 978-3-540-24596-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics