Abstract
We present a new self-stabilizing algorithm for finding a maximal strong matching in an arbitrary distributed network. The algorithm is capable of working with multiple types of demons (schedulers) as is the most recent algorithm in [1,2]. The concepts behind the algorithm, using Ids in the network, promise to have applications for other graph theoretic primitives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloration of arbitary graphs. In: 4th International Conference On Principles Of DIstributed Systems, OPODIS 2000, pp. 55–70. Studia Informatica Universalis (2000)
Dolev, S., Welch, J.L.: Crash resilient communication in dynamic networks. IEEE Transactions on Computers 46, 14–26 (1997)
Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)
Lamport, L.: Solved problems, unsolved problems, and non-problems in concurrency. In: Proceedings of the 3rd Annual ACM Symposium on Principles of Distributed Computing, pp. 1–11 (1984)
Schneider, M.: Self-stabilization. ACM Computing Surveys 25(1), 45–67 (1993)
Herman, T.: A comprehensive bibliograph on self-stabilization, a working paper. Chicago J. Theoretical Comput. Sci., http://www.cs.uiowa.edu/ftp/selfstab/bibliography
Antonoiu, G., Srimani, P.K.: Mutual exclusion between neighboring nodes in an arbitrary system graph tree that stabilizes using read/write atomicity. In: Amestoy, P.R., Berger, P., Daydé, M., Duff, I.S., Frayssé, V., Giraud, L., Ruiz, D. (eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 823–830. Springer, Heidelberg (1999)
Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local mutual exclusion and daemon refinement. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 223–237. Springer, Heidelberg (2000)
Nesterenko, M., Arora, A.: Stabilization-preserving atomicity refinement. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 254–268. Springer, Heidelberg (1999)
Blair, J.R.S., Manne, F.: Efficient self-stabilizing algorithms for tree networks. In: Proceedings of ICDCS 2003, Rhode Island (2003)
Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Fault tolerant distributed coloring algorithms that stabilize in linear time. In: Proceedings of the IPDPS-2002 Workshop on Advances in Parallel and Distributed Computational Models, pp. 1–5 (2002)
Cameron, K.: Induced matchings. Discrete Applied Mathematics 24, 97–102 (1989)
Golumbic, M.C., Lewenstein, M.: New results in induced matchings. Discrete Applied Mathematics 101(1-3), 157–165 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K. (2003). Self-Stabilizing Distributed Algorithm for Strong Matching in a System Graph. In: Pinkston, T.M., Prasanna, V.K. (eds) High Performance Computing - HiPC 2003. HiPC 2003. Lecture Notes in Computer Science, vol 2913. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24596-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-24596-4_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20626-2
Online ISBN: 978-3-540-24596-4
eBook Packages: Springer Book Archive