Skip to main content

Self-Stabilizing Distributed Algorithm for Strong Matching in a System Graph

  • Conference paper
High Performance Computing - HiPC 2003 (HiPC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2913))

Included in the following conference series:

Abstract

We present a new self-stabilizing algorithm for finding a maximal strong matching in an arbitrary distributed network. The algorithm is capable of working with multiple types of demons (schedulers) as is the most recent algorithm in [1,2]. The concepts behind the algorithm, using Ids in the network, promise to have applications for other graph theoretic primitives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloration of arbitary graphs. In: 4th International Conference On Principles Of DIstributed Systems, OPODIS 2000, pp. 55–70. Studia Informatica Universalis (2000)

    Google Scholar 

  2. Dolev, S., Welch, J.L.: Crash resilient communication in dynamic networks. IEEE Transactions on Computers 46, 14–26 (1997)

    Article  Google Scholar 

  3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  4. Lamport, L.: Solved problems, unsolved problems, and non-problems in concurrency. In: Proceedings of the 3rd Annual ACM Symposium on Principles of Distributed Computing, pp. 1–11 (1984)

    Google Scholar 

  5. Schneider, M.: Self-stabilization. ACM Computing Surveys 25(1), 45–67 (1993)

    Article  Google Scholar 

  6. Herman, T.: A comprehensive bibliograph on self-stabilization, a working paper. Chicago J. Theoretical Comput. Sci., http://www.cs.uiowa.edu/ftp/selfstab/bibliography

  7. Antonoiu, G., Srimani, P.K.: Mutual exclusion between neighboring nodes in an arbitrary system graph tree that stabilizes using read/write atomicity. In: Amestoy, P.R., Berger, P., Daydé, M., Duff, I.S., Frayssé, V., Giraud, L., Ruiz, D. (eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 823–830. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local mutual exclusion and daemon refinement. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 223–237. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Nesterenko, M., Arora, A.: Stabilization-preserving atomicity refinement. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 254–268. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Blair, J.R.S., Manne, F.: Efficient self-stabilizing algorithms for tree networks. In: Proceedings of ICDCS 2003, Rhode Island (2003)

    Google Scholar 

  11. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Fault tolerant distributed coloring algorithms that stabilize in linear time. In: Proceedings of the IPDPS-2002 Workshop on Advances in Parallel and Distributed Computational Models, pp. 1–5 (2002)

    Google Scholar 

  12. Cameron, K.: Induced matchings. Discrete Applied Mathematics 24, 97–102 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Golumbic, M.C., Lewenstein, M.: New results in induced matchings. Discrete Applied Mathematics 101(1-3), 157–165 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K. (2003). Self-Stabilizing Distributed Algorithm for Strong Matching in a System Graph. In: Pinkston, T.M., Prasanna, V.K. (eds) High Performance Computing - HiPC 2003. HiPC 2003. Lecture Notes in Computer Science, vol 2913. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24596-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24596-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20626-2

  • Online ISBN: 978-3-540-24596-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics