Skip to main content

Cache Performance of SAT Solvers: a Case Study for Efficient Implementation of Algorithms

  • Conference paper
Theory and Applications of Satisfiability Testing (SAT 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2919))

Abstract

We experimentally evaluate the cache performance of different SAT solvers as a case study for the efficient implementation of SAT algorithms. We evaluate several different Boolean Constraint Propagation (BCP) mechanisms and show their respective run time and cache performances on selected benchmark instances. From the experiments we conclude that a cache friendly data structure is a key element in the efficient implementation of SAT solvers. We also show empirical cache miss rates of several modern SAT solvers based on the Davis-Logemann-Loveland (DLL) algorithm with learning and non-chronological backtracking. We conclude that the recently developed SAT solvers are much more cache friendly in data structures and algorithm implementations compared with their predecessors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biere, A.: Limmat sat solver, http://www.inf.ethz.ch/personal/biere/projects/limmat/

  2. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, p. 193. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Bjesse, P., Leonard, T., Mokkedem, A.: Finding bugs in an Alpha microprocessor using satisfiability solvers. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 454. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in satisfiability problems. In: Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI 1993), pp. 21–27 (1993)

    Google Scholar 

  5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7), 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  6. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Proceedings of the IEEE/ACM Design, Automation, and Test in Europe, DATE (2002)

    Google Scholar 

  7. Bayardo Jr., R.J., Schrag, R.C.: Using CSP look-back techniques to solve real-world SAT instances. In: Proceedings of the National Conference on Artificial Intelligence, AAAI (1997)

    Google Scholar 

  8. Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of the Tenth European Conference on Artificial Intelligence (ECAI 1992), pp. 359–363 (1992)

    Google Scholar 

  9. LaMarca, A., Ladner, R.E.: The influence of caches on the performance of heaps. ACM Journal of Experimental Algorithmics 1 (1996)

    Google Scholar 

  10. Li, C.-M., Anbulagan: Heuristics based on unit propagation for satisfiability problems. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, IJCAI 1997 (1997)

    Google Scholar 

  11. Marques-Silva, J.P., Sakallah, K.A.: GRASP - a search algorithm for propositional satisfiability. IEEE Transactions in Computers 48(5), 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  12. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of the Design Automation Conference (DAC) (June 2001)

    Google Scholar 

  13. Nadel, A.: Jerusat sat solver (2002), http://www.geocities.com/alikn78/

  14. Nam, G., Sakallah, K.A., Rutenbar, R.A.: Satisfiability-based layout revisited: Routing complex FPGAs via search-based Boolean SAT. In: Proceedings of International Symposium on FPGAs (Feburary 1999)

    Google Scholar 

  15. Seward, J.: Valgrind, a open-source memory debugger and cache simulator (2002), http://developer.kde.org/~sewardj/

  16. Simon, L., Le Berre, D., Hirsch, E.A.: SAT 2002 solver competition report (2002), http://www.satlive.org/SATCompetition/onlinereport.pdf

  17. Strichman, O.: Tuning SAT checkers for bounded model-checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)

    Google Scholar 

  18. Velev, M.N., Bryant, R.E.: Effective use of Boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors. In: Proceedings of the Design Automation Conference (DAC) (June 2001)

    Google Scholar 

  19. Xiao, L., Zhang, X., Kubricht, S.A.: Improving memory performance of sorting algorithms. ACM Journal of Experimental Algorithmics 5, 1–23 (2000)

    Article  Google Scholar 

  20. Zhang, H., Stickel, M.E.: An efficient algorithm for unit propagation. In: Proceedings of the Fourth International Symposium on Artificial Intelligence and Mathematics (AI-MATH 1996), Fort Lauderdale, Florida USA (1996)

    Google Scholar 

  21. Zhang, H.: SATO: an efficient propositional prover. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 272–275. Springer, Heidelberg (1997)

    Google Scholar 

  22. Zhang, L.: Zchaff SAT solver, http://www.ee.princeton.edu/~chaff/zchaff.php

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, L., Malik, S. (2004). Cache Performance of SAT Solvers: a Case Study for Efficient Implementation of Algorithms. In: Giunchiglia, E., Tacchella, A. (eds) Theory and Applications of Satisfiability Testing. SAT 2003. Lecture Notes in Computer Science, vol 2919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24605-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24605-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20851-8

  • Online ISBN: 978-3-540-24605-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics