Skip to main content

Properties of Iterated Multiple Belief Revision

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2923))

Abstract

In this paper we investigate the properties of iterated multiple belief revision. We examine several typical assumptions for iterated revision operations with an ontology where an agent assigns ordinals to beliefs, representing strength or firmness of beliefs. A notion of minimal change is introduced to express the idea that if no evidence to show how a belief set should be reordered after it is revised, the changes on the ordering should be minimal. It has been shown that under the assumption of minimal change, the multiple version of Darwiche and Pearl’s postulate (C1) holds no matter in what degree new information is accepted. Moreover, under the same assumption, Boutilier’s postulate (CB) holds if and only if new information is always accepted in the lowest degree of firmness while Nayak et al.’s postulate (CN) holds if and only if new information is always accepted in the highest degree. These results provide an ontological base for analyzing the rationality of postulates of iterated belief revision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. The Journal of Symbolic Logic 50(2), 510–530 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boutilier, C.: Revision sequences and nested conditionals. In: Proc. 13th Int. Joint Conf. on Artificial Intelligence (IJCAI 1993), pp. 519–525 (1993)

    Google Scholar 

  3. Boutilier, C.: Iterated revision and minimal change of conditional beliefs. Journal of Philosophical Logic (25), 262–305 (1996)

    Google Scholar 

  4. Darwiche, A., Pearl, J.: On the Logic of Iterated Belief Revision. In: Proceedings of the fifth Conference on Theoretical Aspects of Reasoning about Knowledge, pp. 5–23 (1994)

    Google Scholar 

  5. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artificial Intelligence 89, 1–29 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Friedman, N., Halpern, J.Y.: Belief revision: A critique. In: KR 1996, pp. 421–431 (1996)

    Google Scholar 

  7. Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT Press, Cambridge (1988)

    Google Scholar 

  8. Gärdenfors, P.: Belief revision: an introduction. In: Gärdenfors, P. (ed.) Belief Revision, pp. 1–28. Cambridge University Press, Cambridge (1992)

    Chapter  Google Scholar 

  9. Konieczny, S., Perez, R.P.: A framework for iterated revision. Journal of Applied Non-Classical Logic 10(3-4), 339–367 (2000)

    MATH  Google Scholar 

  10. Lehmann, D.: Belief revision, revised. In: Proc. 14th Int. Joint Conf. on Artificial Intelligence (IJCAI 1995), pp. 1534–1540 (1995)

    Google Scholar 

  11. Li, W.: A logical framework for evolution of specification. In: Sannella, D. (ed.) ESOP 1994. LNCS, vol. 788, pp. 394–408. Springer, Heidelberg (1994)

    Google Scholar 

  12. Lindström, S.: A semantic approach to nonmonotonic reasoning: inference operations and choice. Uppsala Prints and Preprints in Philosophy (10) (1994)

    Google Scholar 

  13. Nayak, A.: Iterated belief change based on epistemic entrenchment. Erkentnis 41, 353–390 (1994)

    Article  MathSciNet  Google Scholar 

  14. Nayak, A., Foo, N., Pagnucco, M., Sattar, A.: Changing conditional Beliefs unconditionally. In: TARK 1996, pp. 119–135 (1996)

    Google Scholar 

  15. Peppas, P.: Well behaved and multiple belief revision. In: Wahlster, W. (ed.) Proceedings of 12th European Conference on Artificial Intelligence (ECAI 1996), pp. 90–94 (1996)

    Google Scholar 

  16. Spohn, W.: Ordinal conditional functions: a dynamic theory of epestemic states. In: Harper, W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, vol. 2, pp. 105–134 (1987)

    Google Scholar 

  17. Williams, M.A.: Iterated theory base change: a computational model. In: Proc. 14th Int. Joint Conf. on Artificial Intelligence (IJCAI 1995), pp. 1541–1547 (1995)

    Google Scholar 

  18. Zhang, D.: Belief revision by sets of sentences. Journal of Computer Science and Technology 11(2), 108–125 (1996)

    Article  MathSciNet  Google Scholar 

  19. Zhang, D., Chen, S., Zhu, W., Chen, Z.: Representation theorems for multiple belief changes. In: Proc. 15th Int. Joint Conf. on Artificial Intelligence (IJCAI 1997), pp. 89–94 (1997)

    Google Scholar 

  20. Zhang, D., Chen, S., Zhu, W., Li, H.: Nonmonotonic reasoning and multiple belief revision. In: Pollack, M. (ed.) Proceedings of the 15th International Joint Conference on Artificail Intelligence ( IJCAI 1997), pp. 95–100. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  21. Zhang, D., Li, W.: Open logic based on total ordered partition model. Science in China(Series E) 41(6) (1998)

    Google Scholar 

  22. Zhang, D., Foo, N.: Infinitary belief revision. Journal of Philosophical Logic 6(30), 525–574 (2001)

    Article  MathSciNet  Google Scholar 

  23. Zhang, D., Foo, N., Meyer, T., Kwok, R.: Negotiation as mutual belief revision. In: Proceedings of the 5thWorkshop on Nonmonotonic Reasoning, Action, and Change (NRAC 2003), IJCAI 2003 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, D. (2003). Properties of Iterated Multiple Belief Revision. In: Lifschitz, V., Niemelä, I. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2004. Lecture Notes in Computer Science(), vol 2923. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24609-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24609-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20721-4

  • Online ISBN: 978-3-540-24609-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics