Skip to main content

Kronecker Based Matrix Representations for Large Markov Models

  • Chapter
Validation of Stochastic Systems

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2925))

  • 841 Accesses

Abstract

State-based analysis of discrete event systems notoriously suffers from the largeness of state spaces, which often grow exponentially with the size of the model. Since non-trivial models tend to be built by submodels in some hierarchical or compositional manner, one way to achieve a compact representation of the associated state-transition system is to use Kronecker representations that accommodate the structure of a model at the level of a state transition system. In this paper, we present the fundamental idea of Kronecker representation and discuss two different kinds of representations, namely modular representations and hierarchical representations. Additionally, we briefly outline how the different representations can be exploited in efficient analysis algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benoit, A., Plateau, B., Stewart, W.J.: Memory-efficient iterative methods for stochastic automata networks. Technical Report, Rapport de recherche INRIA n. 4259, France (September 2001)

    Google Scholar 

  2. Ajmone-Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with generalized stochastic Petri nets. Wiley, Chichester (1995)

    Google Scholar 

  3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking continuous time Markov chains. ACM Trans. on Computational Logic 1(1), 162–170 (2000)

    Article  MathSciNet  Google Scholar 

  4. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model checking continuous-time Markov chains by transient analysis. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 358–372. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Bause, F., Buchholz, P.: Protocol analysis using a timed version of SDL. In: Quemada, J., Manas, J., Vazquez, E. (eds.) Formal Description Techniques 90, pp. 239–254. North-Holland, Amsterdam (1990)

    Google Scholar 

  6. Bause, F., Buchholz, P., Kemper, P.: QPN-tool for the specification and analysis of hierarchically combined queueing Petri nets. In: Beilner, H., Bause, F. (eds.) MMB 1995 and TOOLS 1995. LNCS, vol. 977, pp. 224–238. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  7. Bernado, M., Gorrieri, R.: A tuturial of EMPA: A theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theoretical Computer Science 202, 1–54 (1998)

    Article  MathSciNet  Google Scholar 

  8. Buchholz, P.: A hierarchical view of GCSPNs and its impact on qualitative and quantitative analysis. Journal of Parallel and Distributed Computing 15(3), 207–224 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Buchholz, P.: Markovian process algebra: composition and equivalence. In: Herzog, U., Rettelbach, M. (eds.) Proc. of the 2nd Work. on Process Algebras and Performance Modelling. Arbeitsberichte des IMMD, vol. 27, pp. 11–30. University of Erlangen (1994)

    Google Scholar 

  10. Buchholz, P.: Equivalence relations for stochastic automata networks. In: Stewart, W.J. (ed.) Computations with Markov Chains, pp. 197–216. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  11. Buchholz, P.: Iterative decomposition and aggregation of labeled gSPNs. In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 226–245. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Buchholz, P.: Hierarchical structuring of superposed GSPNs. IEEE Transactions on Software Engineering 25(2), 166–181 (1999)

    Article  MathSciNet  Google Scholar 

  13. Buchholz, P.: Projection methods for the analysis of stochastic automata networks. In: Plateau, B., Stewart, W.J., Silva, M. (eds.) Numerical Solution of Markov Chains (NSMC 1999), pp. 149–168. Prensas Universitarias de Zaragoza (1999)

    Google Scholar 

  14. Buchholz, P.: Structured analysis approaches for large Markov chains. Applied Numerical Mathematics 31(4), 375–404 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Buchholz, P.: Multi-level solutions for structured Markov chains. SIAM Journal on Matrix Methods and Applications 22(2), 342–357 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Buchholz, P.: An adaptive decomposition approach for the analysis of stochastic Petri nets. In: Proc. Int. Conf. on Dependable Systems and Networks, pp. 647–656. IEEE CS-Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  17. Buchholz, P.: A class of hierarchical queueing networks and their analysis. Queueing Systems 15(1), 59–80 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Buchholz, P., Ciardo, G., Donatelli, S., Kemper, P.: Complexity of Kronecker operations and sparse matrices with applications to the solution of Markov models. INFORMS Journal on Computing 12(3), 203–222 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Buchholz, P., Dayar, T.: Block SOR for Kronecker structured representations. In: Proc. of the Int. Workshop on the Numerical Solution of Markov Chains (2003); To appear as a revised version in Journal Linear Algebra and Applications

    Google Scholar 

  20. Buchholz, P., Katoen, J.P., Kemper, P., Tepper, C.: Model-checking large structured Markov chains. Journal of Logic and Algebraic Programming 56(1/2), 69–97 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Buchholz, P., Kemper, P.: Numerical analysis of stochastic marked graph nets. In: Proc. of the 6th Int. Workshop on Petri Nets and Performance Models, pp. 32–41. IEEE CS-Press, Los Alamitos (1995)

    Chapter  Google Scholar 

  22. Buchholz, P., Kemper, P.: On generating a hierarchy for GSPN analysis. ACM Performance Evaluation Review 26(2), 5–14 (1998)

    Article  Google Scholar 

  23. Buchholz, P., Kemper, P.: A toolbox for the analysis of discrete event dynamic systems. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 483–486. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  24. Buchholz, P., Kemper, P.: Efficient computation and representation of large reachability sets for composed automata. In: Boel, R., Stremersch, G. (eds.) Discrete Event Systems Analysis and Control, pp. 49–56. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  25. Buchholz, P., Kemper, P.: Compact representations of probability distributions in the analysis of superposed GSPNs. In: German, R., Haverkort, B. (eds.) Proc. Petri Nets and Performance Models 2001, pp. 81–90. IEEE CS-Press, Los Alamitos (2001)

    Chapter  Google Scholar 

  26. Buchholz, P., Kemper, P.: Efficient computation and representation of large reachability sets for composed automata. Discrete Event Dynamic Systems Theory and Applications 12(3), 265–286 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Buchholz, P., Kemper, P.: Hierarchical rechability graph generation for Petri nets. Formal Methods in System Design 21(3), 281–315 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Buis, P.E., Dyksen, W.R.: Efficient vector and parallel manipulation of tensor products. ACM Trans. Math. Software 22(1), 18–23 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Campos, J., Colom, J.M., Jungnitz, H., Silva., M.: Approximate throughput computation of stochastic marked graphs. IEEE Transactions on Software Engineering 20(7), 525–535 (1994)

    Article  Google Scholar 

  30. Campos, J., Silva, M., Donatelli, S.: Structured solution of asynchronously communicating stochastic modules. IEEE Transactions on Software Engineering 25(2), 147–165 (1999)

    Article  Google Scholar 

  31. Ciardo, G., Luettgen, G., Siminiceanu, R.: Saturation: An efficient iteration strategy for symbolic state-space generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  32. Ciardo, G., Miner, A.: A data structure for the efficient Kronecker solution of GSPNs. In: Buchholz, P., Silva, M. (eds.) 8th int. Workshop Petri Nets and Performance Models, pp. 22–31. IEEE CS Press, Los Alamitos (1999)

    Google Scholar 

  33. Ciardo, G., Miner, A.: Efficient reachability set generation and storage using decision diagrams. In: Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, vol. 1639. Springer, Heidelberg (1999)

    Google Scholar 

  34. Ciardo, G., Miner, A.S., Donatelli, S.: Using the exact state space of a model to compute approximate stationary measures. In: Kurose, J., Nain, P. (eds.) Proc. ACM Sigmetrics, pp. 207–216. ACM Press, New York (2000)

    Google Scholar 

  35. Ciardo, G., Trivedi, K.: A decomposition approach for stochastic reward net models. Performance Evaluation 18, 37–59 (1994)

    Article  MathSciNet  Google Scholar 

  36. Davio, M.: Kronecker products and shuffle algebra. IEEE Transactions on Computers 30, 116–125 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  37. Dayar, T., Stewart, W.J.: Comparison of partitioning techniques for twolevel iterative solvers on large, sparse Markov chains. SIAM Journal on Scientific Computing 21, 1691–1705 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Deavours, D.D., Sanders, W.H.: An efficient disk-based tool for solving very large Markov models. In: Marie, R., Plateau, B., Calzarossa, M., Rubino, G. (eds.) TOOLS 1997. LNCS, vol. 1245, pp. 58–71. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  39. Derivasi, S., Kemper, P., Sanders, W.H.: The möbius state-level abstract functional interface. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, p. 31. Springer, Heidelberg (2002)

    Google Scholar 

  40. Donatelli, S.: Superposed generalized stochastic Petri nets: definition and efficient solution. In: Valette, R. (ed.) ICATPN 1994. LNCS, vol. 815, pp. 258–277. Springer, Heidelberg (1994)

    Google Scholar 

  41. Donatelli, S.: Superposed stochastic automata: a class of stochastic Petri nets amenable to parallel solution. Performance Evaluation 18, 21–36 (1994)

    Article  MathSciNet  Google Scholar 

  42. Donatelli, S., Kemper, P.: Integrating synchronization with priority into a Kronecker representation. Performance Evaluation 44(1-4), 73–96 (2001)

    Article  MATH  Google Scholar 

  43. Fernandes, P., Plateau, B., Stewart, W.J.: Efficient descriptor-vector multiplication in stochastic automata networks. Journal of the ACM 45(3), 381–414 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  44. Graham, A.: Kronecker products and matrix calculus with applications. Ellis Howard (1981)

    Google Scholar 

  45. Gusak, O., Dayar, T.: Iterative aggregation-disaggregation versus block Gauss- Seidel on stochastic automata networks with unfavorable partitionings. In: Obaidat, M.S., Davoli, F. (eds.) Proc. Int. Symp. on Perf. Eval. of Comp. and Telecomm. Sys., pp. 617–623. SCS-Press (2001)

    Google Scholar 

  46. Hermanns, H., Herzog, U., Mertsiotakis, V.: Stochastic process algebras - between LOTOS and Markov chains. Computer Networks and ISDN Systems 30(9/10), 901–924 (1998)

    Article  Google Scholar 

  47. Hermanns, H., Kwiatkowska, M., Norman, G., Parker, D., Siegle, M.: On the use of MTBDDs for performability analysis and verification of stochastic systems. Journal of Logic and Algebraic Programming 56, 23–67 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  48. Hermanns, H., Rettelbach, M.: Syntax, semantics, equivalences, and axioms for MTIPP. In: Herzog, U., Rettelbach, M. (eds.) Proc. of the 2nd Work. on Process Algebras and Performance Modelling, Arbeitsberichte des IMMD, University of Erlangen, vol. 27 (1994)

    Google Scholar 

  49. Hillston, J.: A compositional approach for performance modelling. Phd thesis, University of Edinburgh, Dep. of Comp. Sc. (1994)

    Google Scholar 

  50. Hoare, C.: Communicating sequential processes. Prentice Hall, Englewood Cliffs (1985)

    Google Scholar 

  51. Katoen, J.P., Kwiatkowska, M., Norman, G., Parker, D.: Faster and symbolic CTMC model checking. In: de Alfaro, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 123–138. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  52. Kemper, P.: Numerical analysis of superposed GSPNs. IEEE Transactions on Software Engineering 22(9), 615–628 (1996)

    Article  Google Scholar 

  53. Kemper, P.: Reachability analysis based on structured representations. In: Billington, J., Reisig, W. (eds.) ICATPN 1996. LNCS, vol. 1091. Springer, Heidelberg (1996)

    Google Scholar 

  54. Kemper, P.: Parallel randomization for large structured Markov chains. In: Proc. of the 2002 int. Conf. om Dependable Systems and Networks, pp. 657–666. IEEE CS Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  55. Kemper, P., Lübeck, R.: Model checking based on Kronecker algebra. In: Forschungsbericht, Fachbereich Informatik, Universität Dortmund, Germany, vol. 669 (1998)

    Google Scholar 

  56. Kwiatkowska, M., Mehmood, R.: Out-of-core solution of large linear systems of equations arising from stochastic modelling. In: Hermanns, H., Segala, R. (eds.) PROBMIV 2002, PAPM-PROBMIV 2002, and PAPM 2002. LNCS, vol. 2399, pp. 135–151. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  57. Langville, A.N., Stewart, W.J.: A Kronecker product approximate preconditioner for SANs. Numerical Linear Algebra with Applications (to appear)

    Google Scholar 

  58. Milner, R.: Communication and concurrency. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  59. Miner, A.: Efficient solution of GSPNs using canonical matrix diagrams. In: German, R., Haverkourt, B. (eds.) Proc. 9th int. Workshop Petri Nets and Performance Models, pp. 101–110. IEEE CS Press, Los Alamitos (2001)

    Chapter  Google Scholar 

  60. Plateau, B.: On the stochastic structure of parallelism and synchronisation models for distributed algorithms. Performance Evaluation Review 13, 142–154 (1985)

    Article  Google Scholar 

  61. Pooley, R., King, P.: The unified modeling language and performance enginering. IEE Proceedings - Software 146(1), 2–10 (1999)

    Article  Google Scholar 

  62. Stewart, W.J.: ntroduction to the numerical solution of Markov chains. Princeton University Press, Princeton (1994)

    Google Scholar 

  63. Stewart, W.J., Atif, K., Plateau, B.: The numerical solution of stochastic automata networks. European Journal of Operational Research 86, 503–525 (1995)

    Article  MATH  Google Scholar 

  64. Uysal, E., Dayar, T.: Iterative methods based on splittings for stochastic automata networks. European Journal of Operational Research 110(1), 166–186 (1998)

    Article  MATH  Google Scholar 

  65. Woodside, C.M., Li, Y.: Performance Petri net analysis of communications protocol software by delay equivalent aggregation. In: Proc. 4th Int. Workshop on Petri Nets and Performance Models, pp. 64–73. IEEE CS-Press, Los Alamitos (1991)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buchholz, P., Kemper, P. (2004). Kronecker Based Matrix Representations for Large Markov Models. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, JP., Siegle, M. (eds) Validation of Stochastic Systems. Lecture Notes in Computer Science, vol 2925. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24611-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24611-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22265-1

  • Online ISBN: 978-3-540-24611-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics