Skip to main content

Knowledge Acquisition and Processing: New Methods for Neuro-Fuzzy Systems

  • Conference paper
SOFSEM 2004: Theory and Practice of Computer Science (SOFSEM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2932))

  • 455 Accesses

Abstract

The paper presents some new methods of knowledge acquisition and processing with regard to neuro-fuzzy systems. Various connectionist architectures that reflect fuzzy IF-THEN rules are considered. The so-called flexible neuro-fuzzy systems are described, as well as relational systems and probabilistic neural networks. Other connectionist systems, such hierarchical neuro-fuzzy systems, type 2 systems, and hybrid rough-neuro-fuzzy systems are mentioned. Finally, the perception-based approach, which refers to computing with words and perceptions, is briefly outlined. Within this framework, a multi-stage classification algorithm and a multi-expert classifier are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bezdek, J.C.: What is computational intelligence? In: Zūrada, J.M., Marks II, R.J., Robinson, C.J. (eds.) Computational Intelligence: Imitating Life, pp. 1–12. IEEE Press, New York (1994)

    Google Scholar 

  2. Branco, P.J.C., Dente, J.A.: A Fuzzy Relational Identification Algorithm and its Application to Predict the Behaviour of a Motor Drive System. Fuzzy Sets and Systems 109, 343–354 (2000)

    Article  MATH  Google Scholar 

  3. Cordòn, O., Herrera, F., Peregrin, A.: T-norms vs. Implication Functions as Implication Operators in Fuzzy Control. In: Proc. 6th International Fuzzy Systems Association World Congress (IFSA 1995), Sao Paulo, Brazil, pp. 501–504 (1995)

    Google Scholar 

  4. Cpałka, K., Rutkowski, L.: Soft Neuro-Fuzzy Systems. In: Proc. Fifth Conference Neural Networks and Soft Computing. Zakopane, Poland, pp. 296–301 (2000)

    Google Scholar 

  5. Cpałka, K., Rutkowski, L.: Compromise Neuro-Fuzzy System. In: Proc. Fourth International Conference on Parallel Processing and Applied Mathematics, Czȩstochowa Poland, pp. 33–40 (2001)

    Google Scholar 

  6. Czogała, E., Łeski, J.: Fuzzy and Neuro-Fuzzy Intelligent Systems. Physica-Verlag/A Springer-Verlag Company, Heidelberg/New York (2000)

    Google Scholar 

  7. Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy Control. Springer, Berlin (1993)

    MATH  Google Scholar 

  8. Dubois, D., Prade, H.: Fuzzy Sets in Approximate Reasoning. Part I: Inference with possibility distribution. Fuzzy Sets and Systems 40, 143–202 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Giorratano, J., Riley, G.: Expert Systems: Principles and Programming. PWS Publishing Company, Boston (1998)

    Google Scholar 

  10. Jackson, P.: Introduction to Expert Systems. Addison Wesley, Reading (1999)

    Google Scholar 

  11. Jang, J.-S.R., Sun, C.-T.: Fuctional Equivalence between Radial Basis Function Networks and Fuzzy Inference Systems. IEEE Trans. Neural Networks 4(1), 156–159 (1993)

    Article  Google Scholar 

  12. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  13. Mamdani, E.H., Assilian, S.: An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. International Journal of Man-Machine Studies 7, 1–13 (1975)

    Article  MATH  Google Scholar 

  14. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice Hall, Upper Saddle River (2001)

    MATH  Google Scholar 

  15. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1992)

    MATH  Google Scholar 

  16. Montana, D.J.: A Weighted Probabilistic Neural Network. Advances in Neural Information Processing Systems 4, 1110–1117 (1992)

    Google Scholar 

  17. Moody, J., Darken, C.: Learning with Localized Receptive Fields. In: Touretzky, D., Hinton, G., Sejnowski, T. (eds.) Connectionist Models Summer School, Pittsburgh, pp. 133–143. Morgan Kaufmann Publishers, San Mateo (1988)

    Google Scholar 

  18. Nauck, D.: A Fuzzy Perceptron as a Generic Model for Neuro-Fuzzy Approaches. In: Proc. Conference: Fuzzy-Systeme 1994, Munich (1994)

    Google Scholar 

  19. Nauck, D., Klawonn, F., Kruse, R.: Foundations of Neuro-Fuzzy Systems. John Wiley & Sons, Chichester (1997)

    Google Scholar 

  20. Nomura, H., Hayashi, I., Wakami, N.: A Self-Tuning Method of Fuzzy Control by Descent Method. In: Proc. 4th International Fuzzy Systems Association World Congress, IFSA 1991 Brussels Belgium, pp. 155–158 (1991)

    Google Scholar 

  21. Nomura, H., Hayashi, I., Wakami, N.: A Self-Tuning Method of Fuzzy Reasoning by Genetic Algorithm. In: Proceedings of the, International Fuzzy Systems and Intelligent Control Conference, Louisville KY USA, pp. 236–245 (1992)

    Google Scholar 

  22. Nowicki, R., Rutkowska, D.: Neuro-Fuzzy Architectures Based on Yager Implication. In: Proc. 5th Conference on Neural Networks and Soft Computing, Zakopane Poland, pp. 353–360 (2000)

    Google Scholar 

  23. Nowicki, R., Rutkowski, L.: Rough-Neuro-Fuzzy System for Classification. In: Proc. 9th International Conference on Neural Information Processing, ICONIP 2002, Orchid Country Club, Singapore (2002)

    Google Scholar 

  24. Nowicki, R., Rutkowski, L.: Soft Techniques for Bayesian Classification. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing, pp. 537–544. Physica- Verlag/A Springer-Verlag Company, Heidelberg/New York (2003)

    Google Scholar 

  25. Nowicki, R., Scherer, R., Rutkowski, L.: A Neuro-Fuzzy System Based on the Hierarchical Prioritized Structure. In: Proc. 10th Zittau Fuzzy Colloquium, Zittau, Germany, pp. 192–198 (2002)

    Google Scholar 

  26. Nowicki, R., Scherer, R., Rutkowski, L.: A Method for Learning of Hierarchical Fuzzy Systems. In: Proc. 2nd Euro-International Symposium on Computational Intelligence 76, Kosice Slovakia, pp. 124–129 (2002)

    Google Scholar 

  27. Nowicki, R., Scherer, R., Rutkowski, L.: A Hierarchical Neuro-Fuzzy System Based on s-Implication. In: Proc. International Joint Conference on Neural Networks, IJCNN 2003, Portland, Oregon, pp. 321–325 (2003)

    Google Scholar 

  28. Patterson, D.W.: Artificial Neural Networks: Therory and Applications. Prentice Hall, Singapore (1996)

    Google Scholar 

  29. Pedrycz, W.: Fuzzy Control and Fuzzy Systems. Research Studies Press, London (1989)

    MATH  Google Scholar 

  30. Rutkowska, D.: Neuro-Fuzzy Architectures and Hybrid Learning. Physica-Verlag/A Springer-Verlag Company, Heidelberg, New York (2002)

    MATH  Google Scholar 

  31. Rutkowska, D.: Type 2 Fuzzy Neural Networks: an Interpretation Based on Fuzzy Inference Neural Networks with Fuzzy Parameters. In: Proc. IEEE Congress on Computational Intelligence, FUZZ-IEEE 2002, Honolulu Hawaii, pp. 1180–1185 (2002)

    Google Scholar 

  32. Rutkowska, D.: A Perception-Based Classification System. In: Proc. CIMCA 2003 Conference, Vienna Austria, pp. 52–61 (2003)

    Google Scholar 

  33. Rutkowska, D.: Perception-Based Systems for Medical Diagnosis. In: Proc. Third EUSFLAT 2003, Zittau, Germany, pp. 741–746 (2003)

    Google Scholar 

  34. Rutkowska, D.: Perception-Based Reasoning: Evaluation Systems. International Journal Task Quarterly 7(1), 131–145 (2003)

    Google Scholar 

  35. Rutkowska, D.: Multi-Expert Systems. In: Proc. 5th International Conference: Parallel Processing and Applied Mathematics, Czȩstochowa, Poland (2003)

    Google Scholar 

  36. Rutkowska, D.: Perception-Based Expert Systems. Soft Computing Journal (2003) (submitted)

    Google Scholar 

  37. Rutkowska, D., Hayashi, Y.: Neuro-Fuzzy Systems Approaches. Journal of Advanced Computational Intelligence 3(3), 177–185 (1999)

    Google Scholar 

  38. Rutkowska, D., Nowicki, R.: Fuzzy Inference Neural Networks Based on Destructive and Constructive Approaches and Their Application to Classification. In: Proc. 4th Conference on Neural Networks and Their Applications, Zakopane, Poland, pp. 294–301 (1999)

    Google Scholar 

  39. Rutkowska, D., Nowicki, R.: Constructive and Destructive Approach to Neuro- Fuzzy Systems. In: Proc. EUROFUSE-SIC 1999, Budapest, Hungary, pp. 100–105 (1999)

    Google Scholar 

  40. Rutkowska, D., Nowicki, R.: Neuro-Fuzzy Architectures Based on Fodor Implication. In: Proc. 8th Zittau Fuzzy Colloquium, Zittau, Germany, pp. 230–237 (2000)

    Google Scholar 

  41. Rutkowska, D., Nowicki, R.: Implication-Based Neuro-Fuzzy Architectures. International Journal of Applied Mathematics and Computer Science 10(4), 675–701 (2000)

    MATH  Google Scholar 

  42. Rutkowska, D., Nowicki, R.: Neuro-Fuzzy Systems: Destructive Approach. In: Chojcan, J., Łeski, J. (eds.) Fuzzy Sets and Their Applications, pp. 285–292. Silesian University Press, Gliwice (2001)

    Google Scholar 

  43. Rutkowska, D., Kacprzyk, J., Zadeh, L. (eds.): Computing with Words and Perceptions. International Journal of Applied Mathematics and Computer Science 12(3) (2002)

    Google Scholar 

  44. Rutkowska, D., Rutkowski, L., Nowicki, R.: Neuro-Fuzzy System with Inference Based on Bounded Product. In: Mastorakis, N. (ed.) Advances in Neural Networks and Applications, pp. 104–109. World Scientific and Engineering Society Press (2001)

    Google Scholar 

  45. Rutkowski, L.: Identification of MISO Nonlinear Regressions in the Presence of a Wide Class of Disturbances. IEEE Trans. Information Theory IT-37, 214–216 (1991)

    Article  MathSciNet  Google Scholar 

  46. Rutkowski, L.: Multiple Fourier Series Procedures for Extraction of Nonlinear Regressions from Noisy Data. IEEE Trans. Signal Processing 41(10), 3062–3065 (1993)

    Article  MATH  Google Scholar 

  47. Rutkowski, L., Cpałka, K.: Flexible Structures of Neuro-Fuzzy Systems. In: Quo Vadis Computational Intelligence. Studies in Fuzziness and Soft Computing, vol. 54, pp. 479–484. Springer, Heidelberg (2000)

    Google Scholar 

  48. Rutkowski, L., Cpałka, K.: A General Approach to Neuro-Fuzzy Systems. In: Proc. 10th IEEE International Conference on Fuzzy Systems, Melbourne Australia (2001)

    Google Scholar 

  49. Rutkowski, L., Cpałka, K.: A Neuro-Fuzzy Controller with a Compromise Fuzzy Reasoning. Control and Cybernetics 31(2), 297–308 (2002)

    MATH  Google Scholar 

  50. Rutkowski, L., Cpałka, K.: Compromise Approach to Neuro-Fuzzy Systems. In: Proc. 2nd Euro-International Symposium on Computational Intelligence, Kosice Slovakia, vol. 76, pp. 85–90 (2002)

    Google Scholar 

  51. Rutkowski, L., Cpałka, K.: Flexible Weighted Neuro-Fuzzy Systems. In: Proc. 9th International Conference on Neural Information Processing, ICONIP 2002, Orchid Country Club Singapore (2002)

    Google Scholar 

  52. Rutkowski, L., Cpałka, K.: Flexible Neuro-Fuzzy Systems. IEEE Trans. Neural Networks 14, 554–574 (2003)

    Article  Google Scholar 

  53. Rutkowski, L., Gałkowski, T.: On Pattern Classification and System Identification by Probabilistic Neural Networks. Applied Mathematics and Computer Science 4(3), 413–422 (1994)

    Google Scholar 

  54. Rutkowski, L., Starczewski, J.: From Type-1 to Type-2 Fuzzy Interference Systems – Part 1, Part 2. In: Proc. Fifth Conference on Neural Networks and Soft Computing, Zakopane, Poland, pp. 46–51, pp. 52–65 (2000)

    Google Scholar 

  55. Sage, A.P. (ed.): Coincise Encyclopedia of Information Processing in Systems and Organization. Pergamon Press, New York (1990)

    Google Scholar 

  56. Setness, M., Babuska, R.: Fuzzy Relational Classifier Trained by Fuzzy Clustering. IEEE Trans. Systems, Man and Cybernetics – Part B: Cybernetics 29(5), 619–625 (1999)

    Article  Google Scholar 

  57. Scherer, R., Rutkowski, L.: A Neuro-Fuzzy Relational System. In: Proc. Fourth International Conference on Parallel Processing and Applied Mathematics, Czȩstochowa Poland, pp. 131–135 (2001)

    Google Scholar 

  58. Scherer, R., Rutkowski, L.: Relational Equations Initializing Neuro-Fuzzy System. In: Proc. 10th Zittau Fuzzy Colloquium, Zittau Germany, pp. 212–217 (2002)

    Google Scholar 

  59. Scherer, R., Rutkowski, L.: Neuro-Fuzzy Relational Systems. In: Proc. 9th International Conference on Neural Information Processing, ICONIP 2002, Orchid Country Club Singapore (2002)

    Google Scholar 

  60. Scherer, R., Rutkowski, L.: A Fuzzy Relational System with Linguistic Antecedent Certainty Factors. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing, pp. 563–569. Physica-Verlag/A Springer-Verlag Company, Heidelberg/New York (2003)

    Google Scholar 

  61. Specht, D.: Probabilistic Neural Networks. Neural Networks 3(1), 109–118 (1990)

    Article  Google Scholar 

  62. Starczewski, J., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  63. Starczewski, J., Rutkowski, L.: Neuro-Fuzzy Inference Systems of Type 2. In: Proc. 9th International Conference on Neural Information Processing, ICONIP 2002, Orchid Country Club Singapore (2002)

    Google Scholar 

  64. Starczewski, J., Rutkowski, L.: Interval Type 2 Neuro-Fuzzy Systems Based on Interval Consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing, pp. 570–577. Physica-Verlag/A Springer-Verlag Company, Heidelberg, New York (2003)

    Google Scholar 

  65. Takagi, H.: Fusion Technology of Neural Networks and Fuzzy Systems: A Chronicled Progression from the Laboratory to Our Daily Lives. International Journal of Applied Mathematics and Computer Science 10(4), 647–673 (2000)

    MATH  Google Scholar 

  66. Wang, L.-X.: Adaptive Fuzzy Systems and Control. PTR Prentice Hall, Englewood Cliffs (1994)

    Google Scholar 

  67. Yager, R.R., Filev, D.P.: Essentials of Fuzzy Modeling and Control. John Wiley & Sons, Chichester (1994)

    Google Scholar 

  68. Zadeh, L.A.: Towards a Theory of Fuzzy Systems. In: Kalman, R.E., DeClaris, N. (eds.) Aspects of Network and System Theory, Holt, Rinehart and Winston (1971)

    Google Scholar 

  69. Zadeh, L.A.: Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Trans. Systems, Man, and Cybernetics SMC-3(1), 28–44 (1973)

    Article  MathSciNet  Google Scholar 

  70. Zadeh, L.A.: Fuzzy Sets and Information Granularity. In: Gupta, M., Ragade, R., Yager, R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North Holland, Amsterdam (1979)

    Google Scholar 

  71. Zadeh, L.A.: Fuzzy Logic, Neural Networks and Soft Computing. Communications of the ACM 37(3), 77–84 (1994)

    Article  MathSciNet  Google Scholar 

  72. Zadeh, L.A.: From Computing with Numbers to Computing with Words – from Manipulation of Measurements to Manipulation of Perceptions. IEEE Trans. Circuits and Systems – I: Fundamental Theory and Applications 45(1), 105–119 (1999)

    Article  MathSciNet  Google Scholar 

  73. Żurada, J.M.: Introduction to Artificial Neural Systems. West Publishing Company, St. Paul (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rutkowska, D. (2004). Knowledge Acquisition and Processing: New Methods for Neuro-Fuzzy Systems. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds) SOFSEM 2004: Theory and Practice of Computer Science. SOFSEM 2004. Lecture Notes in Computer Science, vol 2932. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24618-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24618-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20779-5

  • Online ISBN: 978-3-540-24618-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics