Skip to main content

Proofreading Tile Sets: Error Correction for Algorithmic Self-Assembly

  • Conference paper
DNA Computing (DNA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2943))

Included in the following conference series:

Abstract

For robust molecular implementation of tile-based algorithmic self-assembly, methods for reducing errors must be developed. Previous studies suggested that by control of physical conditions, such as temperature and the concentration of tiles, errors (ε) can be reduced to an arbitrarily low rate – but at the cost of reduced speed (r) for the self-assembly process. For tile sets directly implementing blocked cellular automata, it was shown that rβε 2 was optimal. Here, we show that an improved construction, which we refer to as proofreading tile sets, can in principle exploit the cooperativity of tile assembly reactions to dramatically improve the scaling behavior to rβε and better. This suggests that existing DNA-based molecular tile approaches may be improved to produce macroscopic algorithmic crystals with few errors. Generalizations and limitations of the proofreading tile set construction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Bar-Ziv, R., Libchaber, A.: Effects of DNA sequence and structure on binding of RecA to single-stranded DNA. Proc. Nat. Acad. Sci. USA 98(16), 9068–9073 (2001)

    Article  Google Scholar 

  3. Bar-Ziv, R., Tlusty, T., Libchaber, A.: Protein-DNA computation by stochastic assembly cascade. Proc. Nat. Acad. Sci. USA 99(18), 11589–11592 (2002)

    Article  Google Scholar 

  4. Bloomfield, V.A., Crothers, D.M., Tinoco Jr., I.: Nucleic Acids: Structures, Properties, and Functions. University Science Books (2000)

    Google Scholar 

  5. Bondarenko, B.A.: Generalized Pascal Triangles and Pyramids, Their Fractals, Graphs and Applications. In: Bollinger, R.C. (ed.) The Fibonacci Association (1993) (Translated from the Russian)

    Google Scholar 

  6. Chen, H.-L., Cheng, Q., Goel, A., deh Huang, M., de Espanés, P.M.: Invadable self-assembly: Combining robustness with efficiency. In: ACM-SIAM Symposium on Discrete Algorithms, SODA (2004) (to appear)

    Google Scholar 

  7. Chen, J., Reif, J. (eds.): DNA Computing 9. Springer, Berlin (to appear)

    Google Scholar 

  8. Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In: Chen and Reif [7]

    Google Scholar 

  9. Fu, T.-J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993)

    Article  Google Scholar 

  10. Gács, P.: Reliable cellular automata with self-organization. Journal of Statistical Physics 103(1/2), 45–267 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. Journal of the American Chemical Society 122, 1848–1860 (2000)

    Article  Google Scholar 

  12. Lagoudakis, M.G., LaBean, T.H.: 2-D DNA self-assembly for satisfiability. In: Winfree, E., Gifford, D.K. (eds.) DNA Based Computers V. DIMACS, vol. 54, pp. 141–154. American Mathematical Society, Providence (2000)

    Google Scholar 

  13. Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407(6803), 493–496 (2000)

    Article  Google Scholar 

  14. Mao, C., Sun, W., Seeman, N.C.: Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. Journal of the American Chemical Society 121(23), 5437–5443 (1999)

    Article  Google Scholar 

  15. Pippenger, N.: Developments in the synthesis of reliable organisms from unreliable components. In: The Legacy of John von Neumann, pp. 311–324. American Mathematical Society, Providence (1990)

    Google Scholar 

  16. Ptashne, M.: A Genetic Switch, 2nd edn. Cell Press & Blackwell (1992)

    Google Scholar 

  17. Reif, J.: Compact error-resilient computational DNA tiling assemblies (unpublished manuscript)

    Google Scholar 

  18. Reif, J.: Local parallel biomolecular computing. In: Rubin, H., Wood, D.H. (eds.) DNA Based Computers III. DIMACS, vol. 48, pp. 217–254. American Mathematical Society, Providence (1999)

    Google Scholar 

  19. Rothemund, P.W.K., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles (in preparation)

    Google Scholar 

  20. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: Symposium on Theory of Computing (STOC), ACM, New York (2000)

    Google Scholar 

  21. Schulman, R., Lee, S., Papadakis, N., Winfree, E.: One dimensional boundaries for DNA tile assembly. In: Chen and Reif [7]

    Google Scholar 

  22. Schulman, R., Winfree, E.: Controlling nucleation rates in algorithmic self-assembly (in preparation)

    Google Scholar 

  23. Soloveichik, D., Winfree, E.: Complexity of self-assembled scale-invariant shapes (Submitted)

    Google Scholar 

  24. von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 43–98. Princeton University Press, Princeton (1956)

    Google Scholar 

  25. Wang, H.: Proving theorems by pattern recognition. II. Bell System Technical Journal 40, 1–42 (1961)

    Google Scholar 

  26. Wang, H.: Dominoes and the AEA case of the decision problem. In: Fox, J. (ed.) Proceedings of the Symposium on the Mathematical Theory of Automata, pp. 23–55. Polytechnic Press, Brooklyn (1963)

    Google Scholar 

  27. Winfree, E.: On the computational power of DNA annealing and ligation. In: Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers. DIMACS, vol. 27, pp. 199–221. American Mathematical Society, Providence (1996)

    Google Scholar 

  28. Winfree, E.: Simulations of computing by self-assembly. Technical Report CSTR: 1998.22, Caltech (1998)

    Google Scholar 

  29. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  30. Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of DNA: Some theory and experiments. In: Landweber, L.F., Baum, E.B. (eds.) DNA Based Computers II. DIMACS, vol. 44, pp. 191–213. American Mathematical Society, Providence (1998)

    Google Scholar 

  31. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Winfree, E., Bekbolatov, R. (2004). Proofreading Tile Sets: Error Correction for Algorithmic Self-Assembly. In: Chen, J., Reif, J. (eds) DNA Computing. DNA 2003. Lecture Notes in Computer Science, vol 2943. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24628-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24628-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20930-0

  • Online ISBN: 978-3-540-24628-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics