Skip to main content

Secondary Structure Design of Multi-state DNA Machines Based on Sequential Structure Transitions

  • Conference paper
DNA Computing (DNA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2943))

Included in the following conference series:

  • 695 Accesses

Abstract

This paper deals with the problem of designing the secondary structure of a multi-state molecular machine in which the formation of repeated DNA hairpin structures changes sequentially with the aim of implementing more sophisticated DNA nanomachines. Existing methods are insufficient to construct such a huge molecular machine using multiple DNA molecules. The method used in this paper validates the changes in formation exhaustively by dividing the secondary structure into hairpin units. It considers the minimum free energy of the structure, the structure transition paths, and the total frequency of optimal and sub-optimal structures. Hence, it can better design base sequences using the principles of thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allawi, H.T., et al.: Thermodynamics and NMR of internal GT mismatches in DNA. Biochemistry 36, 10581–10594 (1997)

    Article  Google Scholar 

  2. Allawi, H.T., et al.: Nearest neighbor thermodynamic parameters for internal GA mismatches in DNA. Biochemistry 37, 2170–2179 (1998)

    Article  Google Scholar 

  3. Allawi, H.T., et al.: Thermodynamics of internal CT mismatches in DNA. Nucleic Acids Research 26, 2694–2701 (1998)

    Article  Google Scholar 

  4. Allawi, H.T., et al.: Nearest-neighbor thermodynamics of internal AC mismatches in DNA: Sequence dependence and pH effects. Biochemistry 37, 9435–9444 (1998)

    Article  Google Scholar 

  5. Bommarito, S., et al.: Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Research 28, 1929–1934 (2000)

    Article  Google Scholar 

  6. Flamm, C., et al.: RNA folding at elementary step resolution. RNA 6, 325–338 (2000)

    Article  Google Scholar 

  7. Hofacker, I.L., et al.: Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie (Chemical Monthly) 125, 167–188 (1994)

    Article  Google Scholar 

  8. Kameda, A., et al.: Conformational addressing using the hairpin structure of single-stranded DNA. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 219–224. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Mao, C., et al.: A nanomechanical device based on the B-Z transition of DNA. Nature 397, 144–146 (1999)

    Article  Google Scholar 

  10. McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119 (1990)

    Article  Google Scholar 

  11. Morgan, S.R., et al.: Barrier heights between ground states in a model of RNA secondary structure. J. Phys. A: Math. Gen. 31, 3153–3170 (1998)

    Article  MATH  Google Scholar 

  12. Peyret, N., et al.: Nearest neighbor thermodynamics of DNA with AA, CC, GG and TT mismatches. Biochemistry 38, 3468–3477 (1999)

    Article  Google Scholar 

  13. SantaLucia Jr., J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 95, 1460–1465 (1998)

    Article  Google Scholar 

  14. Simmel, F.C., et al.: Using DNA to construct and power a nanoactuator. Physical Review E 63, 041913 (2001)

    Article  Google Scholar 

  15. Simmel, F.C., et al.: A DNA-based molecular device switchable between three distinct mechanical states. Applied Physics Letters 80, 883–885 (2002)

    Article  Google Scholar 

  16. Turberfield, A.J., et al.: DNA fuel for free-running nanomachines. Physical Review Letters 90(11), 118102 (2003)

    Article  Google Scholar 

  17. Uejima, H., et al.: Analyzing the secondary structure transition paths of DNA/RNA molecules. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 86–90. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Wuchty, S., et al.: Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49, 145–165 (1999)

    Article  Google Scholar 

  19. Yan, H., et al.: A robust DNA mechanical device controlled by hybridization topology. Nature 145, 62–65 (2002)

    Article  Google Scholar 

  20. Yurke, B., et al.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

  21. Zuker, M., et al.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9, 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uejima, H., Hagiya, M. (2004). Secondary Structure Design of Multi-state DNA Machines Based on Sequential Structure Transitions. In: Chen, J., Reif, J. (eds) DNA Computing. DNA 2003. Lecture Notes in Computer Science, vol 2943. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24628-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24628-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20930-0

  • Online ISBN: 978-3-540-24628-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics