Skip to main content

A New Efficient Clustering Algorithm for Organizing Dynamic Data Collection

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2945))

  • 991 Accesses

Abstract

We deal with dynamic information organization for more efficient Internet browsing. As the appropriate algorithm for this purpose, we propose modified ART (artificial resonance theory) algorithm, which functions similarly with the dynamic Star-clustering algorithm but performs a more efficient time complexity of O(nk), (kn) instead of O(n 2 log 2 n) found in the dynamic Star-clustering algorithm. In order to see how fast the proposed algorithm is in producing clusters for organizing information, the algorithm is tested on CLASSIC3 in comparison with the dynamic Star-clustering algorithm.

Work supported by the ITRI of the Chung-Ang University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Montes-y-Gomez, M., Lopez-Lopez, A., Gelbukh, A.: Information Retrieval with Conceptual Graph Matching. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 312–321. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Aslam, J., Pelekhov, K., Rus, D.: A Practical Clustering Algorithm for Static and Dyamic Information Organization. In: Proceedings of the 1999 Symposium on Discrete Algorithms, Baltimore, MD (1999)

    Google Scholar 

  3. Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy ART: An Adaptive Resonance Algorithm for Rapid, Stable Classification of Analog Patterns. In: Proceedings of 1991 International Conference Neural Networks, vol. II (1991)

    Google Scholar 

  4. Dhillon, I.S., Modha, D.S.: Concept Decomposition for Large Sparse Text Data using Clustering. Technical Report RJ 10147(9502), IBM Almaden Research Center (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shin, K., Han, S. (2004). A New Efficient Clustering Algorithm for Organizing Dynamic Data Collection. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2004. Lecture Notes in Computer Science, vol 2945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24630-5_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24630-5_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21006-1

  • Online ISBN: 978-3-540-24630-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics