Abstract
Let \(\mathcal{C}\) be the primitive ternary BCH code of length 3m – 1 with designed distance δ. It is shown that, when δ = 8, then the covering radius of \(\mathcal{C}\) is 7 whenever m ≥ 20 and m is even, and when δ = 14, then the covering radius of \(\mathcal{C}\) is 13 whenever m ≥ 46. The technique involves Galois-theoretic criteria on the splitting of polynomials over finite fields.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cassels, J.W.S., Fröhlich, A. (eds.): Algebraic Number Theory. Academic Press, London (1967)
Cohen, G.D., Karpovsky, M.G., Mattson Jr., H.F., Schatz, J.R.: Covering Radius—Survey and Recent Results. IEEE Transactions on Information Theory IT-31(3), 328–343 (1985)
Cohen, S.D.: Uniform Distribution of Polynomials over Finite Fields. J. London Math. Soc. 6(2), 93–102 (1972)
Cohen, S.D.: The Length of Primitive BCH Codes with Minimal Covering Radius. Designs, Codes and Cryptography 10, 5–16 (1997)
Cohen, S.D.: Polynomial Factorisation and an Application to Regular Directed Graphs. Finite Fields and Their Applications 4, 316–346 (1998)
Fried, M.D., MacRae, R.E.: On Curves with Separated Variables. Math. Ann. 180, 220–226 (1969)
Fulton, W.: Algebraic Curves. Benjamin, New York (1969)
Helleseth, T.: On the Covering Radius of Cyclic Linear Codes and Arithmetic Codes. Discr. Appl. Math. 11, 157–173 (1985)
Kaipainen, Y.: On the Covering Radius of Long Non-binary BCH Codes, Dissertation, University of Turku (1995)
Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994)
Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Heidelberg (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Franken, R., Cohen, S.D. (2004). The Covering Radius of Some Primitive Ternary BCH Codes. In: Mullen, G.L., Poli, A., Stichtenoth, H. (eds) Finite Fields and Applications. Fq 2003. Lecture Notes in Computer Science, vol 2948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24633-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-24633-6_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21324-6
Online ISBN: 978-3-540-24633-6
eBook Packages: Springer Book Archive