Skip to main content

Formal Properties of Gene Assembly: Equivalence Problem for Overlap Graphs

  • Chapter
Aspects of Molecular Computing

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2950))

Abstract

Gene assembly in ciliates is a life process fascinating from both the biological and the computational points of view. Several formal models of this process have been formulated and investigated, among them a model based on (legal) strings and a model based on (overlap) graphs. The latter is more abstract because the translation of legal strings into overlap graphs is not injective. In this paper we consider and solve the overlap equivalence problem for realistic strings: when do two different realistic legal strings translate into the same overlap graph? Realistic legal strings are legal strings that “really” correspond to genes generated during the gene assembly process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouchet, A.: Circle graphs. Combinatorica 7, 243–254 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bouchet, A.: Circle graph obstructions. J. Combin. Theory Ser. B 60, 107–144 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. de Fraysseix, H.: A characterization of circle graphs. European J. Combin. 5, 223–238 (1984)

    MATH  MathSciNet  Google Scholar 

  4. Ehrenfeucht, A., et al.: Formal systems for gene assembly in ciliates. Theoret. Comput. Sci. 292, 199–219 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ehrenfeucht, A., et al.: Characterizing the micronuclear gene patterns in ciliates. Theory of Computation and Systems 35, 501–519 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ehrenfeucht, A., Harju, T., Rozenberg, G.: Gene assembly through cyclic graph decomposition. Theoretic Comput. Syst. 281, 325–349 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ehrenfeucht, A., Petre, I., Prescott, D.M., Rozenberg, G.: Universal and simple operations for gene assembly in ciliates. In: Mitrana, V., Martin-Vide, C. (eds.) Words, Sequences, Languages: where Computer Science, Biology and Linguistics Meet, pp. 329–342. Kluwer Academic Publishers, Dortrecht (2001)

    Google Scholar 

  8. Ehrenfeucht, A., et al.: String and graph reduction systems for gene assembly in ciliates. Math. Structures Comput. Sci. 12, 113–134 (2001)

    MathSciNet  Google Scholar 

  9. Ehrenfeucht, A., Petre, I., Prescott, D.M., Rozenberg, G.: Circularity and other invariants of gene assembly in cliates. In: Ito, M., Păun, G., Yu, S. (eds.) Words, Semigroups, and Transductions, pp. 81–97. World Scientific, Singapore (2001)

    Chapter  Google Scholar 

  10. Ehrenfeucht, A., Prescott, D.M., Rozenberg, G.: Computational aspects of gene (un)scrambling in ciliates. In: Landweber, L., Winfree, E. (eds.) Evolution as Computation, pp. 45–86. Springer, Heidelberg (2001)

    Google Scholar 

  11. Harju, T., Rozenberg, G.: Computational processes in living cells: gene assembly in ciliates. Lecure Notes in Comput. Sci. (to appear)

    Google Scholar 

  12. Landweber, L.F., Kari, L.: The evolution of cellular computing: nature’s solution to a computational problem. In: Proceedings of the 4th DIMACS Meeting on DNA Based Computers, Philadelphia, PA, pp. 3–15 (1998)

    Google Scholar 

  13. Landweber, L.F., Kari, L.: Universal molecular computation in ciliates. In: Landweber, L., Winfree, E. (eds.) Evolution as Computation, Springer, Heidelberg (2002)

    Google Scholar 

  14. Prescott, D.M.: The unusual organization and processing of genomic DNA in Hypotrichous ciliates. Trends in Genet. 8, 439–445 (1992)

    Google Scholar 

  15. Prescott, D.M.: The DNA of ciliated protozoa. Microbiol Rev. 58(2), 233–267 (1994)

    Google Scholar 

  16. Prescott, D.M.: Genome gymnastics: unique modes of DNA evolution and processing in ciliates. Nat. Rev. Genet. 1(3), 191–198 (2000)

    Article  Google Scholar 

  17. Prescott, D.M., Ehrenfeucht, A., Rozenberg, G.: Molecular operations for DNA processing in hypotrichous ciliates. European Journal of Protistology 37, 241–260 (2001)

    Article  Google Scholar 

  18. Prescott, D.M., Rozenberg, G.: How ciliates manipulate their own DNA – A splendid example of natural computing. Natural Computing 1, 165–183 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harju, T., Petre, I., Rozenberg, G. (2003). Formal Properties of Gene Assembly: Equivalence Problem for Overlap Graphs. In: Jonoska, N., Păun, G., Rozenberg, G. (eds) Aspects of Molecular Computing. Lecture Notes in Computer Science, vol 2950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24635-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24635-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20781-8

  • Online ISBN: 978-3-540-24635-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics